
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE LORENA

MURILO AFONSO ROBIATI BIGOTO

Avaliação de modelos de machine learning para predição da temperatura
crítica de supercondutores

Lorena
2020



MURILO AFONSO ROBIATI BIGOTO

Avaliação de modelos de machine learning para predição da temperatura
crítica de supercondutores

Trabalho de Graduação apresentado à Escola de Enge-
nharia de Lorena da Universidade de São Paulo como
requisito parcial para conclusão da Graduação do curso
de Engenharia Física.

Orientador: Prof. Dr. Luiz Tadeu Fernandes Eleno

Lorena
2020



AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO
CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

Ficha catalográfica elaborada pelo Sistema Automatizado
da Escola de Engenharia de Lorena, 

com os dados fornecidos pelo(a) autor(a)

Bigoto, Murilo Afonso Robiati
   Avaliação de modelos de machine learning para
predição da temperatura crítica de supercondutores /
Murilo Afonso Robiati Bigoto; orientador  Luiz Tadeu
Fernandes Eleno. - Lorena, 2020.
 78 p.

   Monografia apresentada como requisito parcial
para a conclusão de Graduação do Curso de Engenharia
Física - Escola de Engenharia de Lorena da
Universidade de São Paulo. 2020

   1. Machine learning. 2. Supercondutividade. 3.
Temperatura crítica. 4. Inteligência artificial. I.
Título. II. Eleno,  Luiz Tadeu Fernandes, orient.



Dedico este trabalho aos meus pais, que sempre me transmitiram amor e apoio.



Agradecimentos

Agradeço inestimavelmente aos meus pais, Radamez e Sandra, por todos os esforços e
incentivos direcionados à minha formação acadêmica e profissional. Agradeço também a eles
por propiciarem a minha experiência de existir e a formação do meu caráter. Sou muito grato à
minha mãe por me ensinar o que é o verdadeiro amor e por ser um exemplo de força e bravura. E
ao meu pai, sou extremamente grato por ser meu exemplo de virtudes e honestidade.

Sem o apoio e incentivo dos meus pais e avós, eu certamente não teria saído atrás dos
meus sonhos e abandonado a pacata Santana da Ponte Pensa, que com seus mil e quatrocentos
habitantes, vive em tempos arcaicos. Assim, agradeço a toda minha família, pois sem eles eu não
teria forças para seguir em frente e batalhar pelo que eu acredito.

À minha avó Sebastiana Diniz, sou eternamente grato pela companhia, suporte, demons-
trações de amor e amizade. Ela me ensinou o verdadeiro significado de amor ao próximo e
companheirismo. Ao meu avô José Bigoto, tenho uma dívida eterna por ter me mostrado que as
coisas simples são as mais importantes, que a vida é uma oportunidade única, sendo indispensável
ser quem realmente somos.

Ao meu avô Alvides Robiati, agradeço grandemente por ter me mostrado que envelhecer
não passa de uma perspectiva física e que vitalidade é algo intrínseco ao ser que habita uma
carcaça de carne. À minha avó Anita Neves, deixo o agradecimento por me mostrar um amor
puro e belo. É dela que eu tenho o maior exemplo de sensatez, compaixão e verdade.

Agradeço ao meu pequeno irmão Miguel, por me possibilitar experimentar o sentimento
de ser uma pessoa relevante e me fazer querer que o mundo seja um lugar melhor. Sou muito
grato por ele se mostrar ser uma criança cética e admirar com muita pureza a natureza.

Não poderia deixar de agradecer a todos os professores e cientistas comprometidos com
a verdadeira ciência, pois eles são quase sempre os responsáveis por mostrar que a ciência é
a ferramenta mais disruptiva para a evolução da nossa espécie. Além disso, eles são um dos
principais mediadores do conhecimento científico – o agente mais importante no combate ao
fanatismo, extremismo, incoerência e ignorância.

Nessa perspectiva, agradeço ao Prof. Dr. Luiz Tadeu Fernandes Eleno, por ter aceito meu
pedido de orientação e ser um profissional admirável e compromissado com a transmissão do
conhecimento científico.

Agradeço muito aos meus amigos, que mesmo antes do meu ingresso à universidade,
estiveram ao meu lado e me incentivaram a buscar meus sonhos. Neste contexto, agradeço
o companheirismo e as noites regadas a Raul Seixas, que meu grande amigo João Pedro me
proporcionou.



Ao decorrer da minha graduação, conheci muitas pessoas importantes, que com certeza
marcaram para sempre minha vida. Dentre elas, devo mencionar e agradecer ao meu grande
amigo Carlos A. Cortez Jr., que em todos os momentos da minha trajetória universitária esteve
ao meu lado. Ele foi meu amigo, minha dupla para trabalhos e estudos, meu companheiro de
praticamente todas as disciplinas e momentos.

Devo indispensavelmente agradecer à minha namorada, por todo amor e afeto transmitido
a mim, durante minha trajetória universitária. Ela foi minha companheira constante, a qual sempre
esteve ao meu lado, seja em momentos delicados ou aventureiros. Além disso, é com ela e meu
cachorro Ozzy, que divido de maneira mais leve este infortúnio momento de quarentena, em
decorrência à Covid-19.



Resumo
O fenômeno da supercondutividade foi descoberto em 1911 por Heike K. Onnes. Desde então,
não foi possível consolidar um desenvolvimento teórico capaz de explicar o comportamento
de materiais supercondutores em diferentes faixas de temperatura. Desse modo, descrever pro-
priedades supercondutoras, como a temperatura crítica (Tc), ainda é um grande desafio. Nessa
perspectiva, usar ferramentas de Inteligência Artificial se torna uma alternativa para a predição
de propriedades dos supercondutores. Assim, este trabalho busca avaliar a capacidade de alguns
modelos de machine learning na predição de Tc. Para treinar os modelos de machine learning,
foram utilizados dados de supercondutores extraídos do banco de dados do Instituto Nacional de
Ciência dos Materiais do Japão (NIMS). Assim, a partir da fórmula química dos supercondutores
extraídos, foram calculadas medidas estatísticas relacionadas à massa atômica, primeira energia
de ionização, raio atômico, densidade, afinidade eletrônica, calor de fusão, condutividade térmica
e valência. Com base nas medidas calculadas e na temperatura crítica obtida do NIMS, os mo-
delos de machine learning foram submetidos ao processo de aprendizado supervisionado. Para
melhor adequar estes modelos ao problema proposto, seus hiperparâmetros foram obtidos pelo
processo de validação cruzada. Os modelos de machine learning avaliados nesta monografia são:
Regressão Linear Múltipla; Elastic-Net; Máquinas de Vetores de Suporte; Árvore de Decisão;
Floresta Aleatória; Árvores Extremamente Aleatórias; Gradient Boosting; Rede Neural Profunda
(Multicamadas de Perceptrons). Como melhor resultado, o modelo Árvores Extremamente Ale-
atórias alcançou um R2 de 0,94 e um RMSE de 8,69 K para um conjunto de dados de teste,
contendo amostras de supercondutores não empregadas no processo de treinamento.

Palavras-chave: Aprendizado de Máquina. Supercondutividade. Temperatura Crítica.



Abstract
The phenomenon of superconductivity was discovered in 1911 by Heike K. Onnes. Since then, it
has not been possible to consolidate a theoretical development capable of explaining the behavior
of superconducting materials in different temperature ranges. Thus, describing superconduct-
ing properties, such as critical temperature (Tc), is still a major challenge. In this perspective,
using Artificial Intelligence tools becomes an alternative for the prediction of superconducting
properties. Thus, this work seeks to evaluate the capacity of some machine learning models in
the prediction of Tc. To train the machine learning models, data from superconductors extracted
from the database of the National Institute of Materials Science in Japan (NIMS) were used.
Thus, from the chemical formula of the superconductors extracted, statistical measures related
to atomic mass, first ionization energy, atomic ray, density, electronic affinity, heat of fusion,
thermal conductivity and valence were calculated. Based on the calculated measures and the
critical temperature obtained from the NIMS, the machine learning models were submitted to the
supervised learning process. To better adapt these models to the proposed problem, their hyperpa-
rameters were obtained by the cross-validation process. The machine learning models evaluated
in this monograph are: Multiple Linear Regression; Elastic-Net; Support Vector Machines, Deci-
sion Tree; Random Forest; Extremely Random Trees; Gradient Boosting; Deep Neural Network
(Perceptrons multilayer). As a best result, the Extremely Random Trees model reached a R2 of
0,94 and a RMSE of 8,69 K for a set of test data, containing samples of superconductors not
used in the training process.

Keywords: Machine Learning. Superconductivity. Critical Temperature.
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1 Introdução

A supercondutividade já foi tema de 5 Prêmios Nobel em Física e por mais que tenha sido
descoberta há aproximadamente 109 anos, ainda é uma área de estudos atual. De uma maneira
ampla, um material é dito supercondutor quando conduz corrente elétrica a uma resistência
praticamente nula, abaixo de determinada temperatura (HAMIDIEH, 2018). Esta temperatura, a
qual abaixo dela o sistema entra no estado supercondutor, é denominada temperatura crítica (Tc).

Segundo Costa e Pavão (2012), a descoberta da supercondutividade foi extremamente
disruptiva, pois contrariou a descrição das teorias de condutividade vigentes na época. Dessa
forma, por mais que a supercondutividade tenha sido observada primeiramente por Heike K.
Onnes em 1911, ela só foi satisfatoriamente teorizada pela teoria BCS, desenvolvida em 1957.

Apesar da teoria BCS ter revolucionado a história da supercondutividade, ela não foi
capaz de explicar os adventos dos supercondutores de altas temperaturas e dos supercondutores
com acoplamentos fortes (BOERI, 2020). Ainda assim, obter ummodelo científico ou teoria capaz
de predizer satisfatoriamente a temperatura crítica dos supercondutores, ainda é um problema
em aberto (HAMIDIEH, 2018).

Nessa perspectiva, este trabalho se propõe a avaliar modelos de aprendizado de máquina,
no processo de predição da temperatura crítica de supercondutores, a partir de suas fórmulas
químicas. Os dados usados para treinar os modelos foram inspirados na abordagem usada por
Hamidieh (2018). Nesta abordagem, medidas estatísticas de propriedades físicas foram calculadas
com base na fórmula química dos supercondutores. As fórmulas químicas e as temperaturas
críticas dos supercondutores foram obtidas do Instituto Nacional de Ciência dos Materiais do
Japão.

Com o cálculo das características - medidas estatísticas das propriedades físicas -, os
modelos de aprendizado de máquina foram submetidos ao treinamento pelo processo de apren-
dizado supervisionado. Além disso, buscando generalizar melhor os modelos, o processo de
validação cruzada foi explorado para encontrar os melhores hiperparâmetros em cada caso.

No desenvolvimento da metodologia deste trabalho, os seguintes modelos de aprendizado
de máquina foram abordados: Regressão Linear Múltipla; Elastic-Net; Máquinas de Vetores de
Suporte; Árvore de Decisão; Floresta Aleatória; Árvores Extremamente Aleatórias; Gradient
Boosting; Rede Neural Profunda. Estes modelos foram avaliados e comparados através das
métricasR2 eRMSE, que são, respectivamente, o coeficiente de determinação e a raiz quadrada
do erro quadrático médio.

Por fim, espera-se com este trabalho avaliar a capacidade dos modelos apresentados acima,
na tarefa de predição da temperatura crítica de novos supercondutores. Além disso, objetiva-se
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encontrar o melhor modelo entre os avaliados e compará-lo com resultados encontrados em
literaturas semelhantes.

1.1 Organização do Trabalho

No Capítulo 2 são apresentados conceitos básicos, que elucidam brevemente o panorama
da supercondutividade e do aprendizado de máquina. É neste capítulo, que são abordados con-
ceitos fundamentais sobre cada modelo de aprendizado de máquina e seus hiperparâmetros. No
Capítulo 3 é apresentada a metodologia empregada no desenvolvimento dessa monografia. Além
disso, neste capítulo são apresentados os procedimentos usados para: obtenção dos dados; busca
dos melhores hiperparâmetros; treinamento e avaliação dos modelos. O Capítulo 4 é responsável
por apresentar superficialmente os dados, mostrar os hiperparâmetros obtidos pelo processo de
validação cruzada e discutir os resultados da predição de cada modelo, com base nas métricas
R2 e RMSE. Ainda, o Capítulo 4 é responsável por discutir de forma geral os resultados dos
modelos e compará-los com a literatura. O Capítulo 5 é usado para sintetizar e concluir as
discussões gerais sobre a avaliação dos modelos. Ademais, este último capítulo é usado para
apresentar futuras pretensões sobre a continuação desta monografia.
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2 Fundamentação Teórica

2.1 Supercondutividade

A supercondutividade foi descoberta em 1911 por Heike K. Onnes, ao estudar o comporta-
mento da resistência elétrica dos materiais a baixas temperaturas (COSTA; PAVÃO, 2012). Onnes
observou que próximo a 4,2 K a resistência do mercúrio caia abruptamente, comportando-se
de forma inesperada perante as teorias de condutividade vigentes para época (COSTA; PAVÃO,
2012). A esta temperatura foi atribuído o nome de temperatura crítica (Tc), que representa a
temperatura abaixo da qual determinado sistema entra no estado supercondutor, como brevemente
mencionado na Capítulo 1 (COSTA; PAVÃO, 2012).

Basicamente, materiais supercondutores são aqueles capazes de conduzir corrente com
resistência elétrica praticamente zero (HAMIDIEH, 2018). Dentre suas aplicações, pode-se
destacar a atuação de supercondutores em aparelhos de ressonância magnética, dispositivos
extremamente sensíveis a campos magnéticos (SQUIDs) e bobinas de altos campos, que são
empregadas em aceleradores de partículas (HAMIDIEH, 2018).

Por mais tempo que a supercondutividade tenha sido descoberta, não há uma teoria
consolidada capaz de descrever a ocorrência deste fenômeno em diferentes faixas de temperatura
crítica (COSTA; PAVÃO, 2012). Além disso, a obtenção de supercondutores que manifestem
o estado supercondutor em temperaturas próximas ou maiores que a ambiente, ainda é um
grande desafio (COSTA; PAVÃO, 2012). Nessa perspectiva, predizer a temperatura crítica de
um supercondutor através de um modelo ou teoria científica, ainda é um problema em aberto,
como mencionado na Introdução (HAMIDIEH, 2018).

Após a descoberta da supercondutividade, a teoria BCS foi a primeira teoria microscópica
a tentar descrevê-la, entretanto, ela foi incapaz de explicar o comportamento de supercondutores
de altas temperaturas críticas (COSTA; PAVÃO, 2012). Apesar disso, a supercondutividade
conseguiu evoluir com as predições de Tc e outras propriedades, através da teoria anisotrópica
de Midgal-Eliashberg e por métodos baseados em Teoria do Funcional da Densidade (DFT), a
partir de abordagens de primeiros princípios (ab initio) (BOERI, 2020).

Na Figura 2.1 são apresentadas temperaturas críticas em função do ano em que foram
descobertas, para os principais supercondutores deste século. No eixo horizontal superior do
gráfico da Figura 2.1, são elucidadas as principais metodologias desenvolvidas (BOERI, 2020):
Teoria Funcional da Densidade Supercondutora (Superconducting Density Functional Theory)
- SDFT(1); interação elétron-fônon com Funções Wannier - EP+WAN; teoria anisotrópica ab
initio Migdal-Eliashberg - Anis. ME; aproximação harmônica autoconsistente - SSCHA; ab
initio flutuações de spin - SCDFT(2).
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Figura 2.1 – Temperaturas críticas e metodologias ab initio mais importantes do século 21 para
a supercondutividade

Fonte: Boeri (2020)

A fundamentação teórica por trás da supercondutividade e seus métodos computacionais
ab initio, mostrados na Figura 2.1, é pautada nas teorias microscópicas de Bardeen-Cooper-
Schrieffer (BCS) e de acoplamento forte de Migdal-Eliashberg (ME), e na capacidade da DFT
em fornecer espectros eletrônicos e bosônicos precisos para a maioria dos materiais (BOERI,
2020).

Como mencionado anteriormente, a teoria BCS foi a primeira teoria microscópica usada
para descrever a supercondutividade. Ela foi elaborada por Bardeen, Cooper e Schrieffer em 1957
(BOERI, 2020). O fator central desta teoria é a interação entre elétrons mediada pela energia
quantizada de vibração da rede cristalina (fônons) (COSTA; PAVÃO, 2012).

Desse modo, um elétron interage com a estrutura da rede cristalina e a deforma. Após a
deformação, um outro elétron a usa para minimizar sua energia, constituindo um sistema elétron-
fônon-elétron (COSTA; PAVÃO, 2012). A Figura 2.2 elucida a deformação da rede cristalina
para a formação do par de Cooper - como são chamados os dois elétrons que compõem o sistema
elétron-fônon-elétron descrito nesse parágrafo (KHANNA, 2017).

Herbert Fröhlich foi o primeiro a propor a interação eletrônica mediada por fônons e
formular o aparecimento de um gap proveniente dela (COSTA; PAVÃO, 2012). O gapmencionado
refere-se ao aparecimento de uma banda proibida entre o estado fundamental e o primeiro estado
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Figura 2.2 – A imagem (a) representa a rede cristalina para um metal acima da Tc. A imagem (b)
apresenta a formação do par de Cooper a partir da interação elétron-fônon-elétron,
para temperaturas abaixo da Tc

Fonte: Khanna (2017)

excitado do sistema elétron-fônon-elétron (COSTA; PAVÃO, 2012). Segundo Costa e Pavão
(2012), o gap em questão emerge no estado supercondutor, pois a interação elétron-fônon gera
uma atratividade entre os elétrons envolvidos, a qual é maior que a repulsão coulombiana.

Dessa forma, o gap (∆) no estado supercondutor é desenvolvido ao redor do nível de
Fermi (EF ), no qual ∆ é máximo a 0 K e inexistente quando a temperatura (T ) é igual a Tc
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(BOERI, 2020). A razão de elétrons que formam pares de Cooper é dada por∆/EF ≈ 10−3, que
muitas vezes é denominada de razão de condensado de um supercondutor (BOERI, 2020).

Com base no que foi discutido até o momento para a BCS, a Equação 2.1 elucida um
variacional para uma função de onda de muitos corpos, que representa a superposição de elétrons
e pares de Cooper (BOERI, 2020). Dessa forma, a presença da fração de condensado faz com
que o gap apareça no espectro eletrônico εk.

∆k =
1

2

∑
k,k′

Vk,k′∆k,k′√
ε2k +∆2

k

tanh

(√
ε2k +∆2

k

2T

)
(2.1)

Na Equação 2.1, o potencial Vk,k′ da teoria BCS representa a interação elétron-elétron,
somente se os dois elétrons com vetores de onda k e k′ estiverem em uma região de energia ωD
ao redor da energia de Fermi (EF ). Resolvendo a Equação 2.1 analiticamente obtêm-se (BOERI,
2020):

∆ (T = 0) ' 2ωD exp

(
− 1

N (EF )V

)
, κBTc = 1, 13ωD exp

(
− 1

N (EF )V

)
, (2.2)

no qual V representa a interação potencial entre os elétrons, ωD representa a escala energética
dos fônons (como a frequência de Debye), N(EF ) é a densidade de estados no nível de Fermi e
κB é a constante de Boltzmann. Nessa perspectiva, a 0 K a seguinte relação envolvendo Tc pode
ser obtida (COSTA; PAVÃO, 2012):

2∆(0) = 3, 52κBTc. (2.3)

Apesar de grandes contribuições para o campo da supercondutividade, a teoria BCS
foi capaz de explicar somente supercondutores com acoplamento fraco (λ = N(EF )V << 1)
(BOERI, 2020). Além disso, ela foi inapta a explicar o comportamento de supercondutores com
temperaturas críticas mais elevadas (COSTA; PAVÃO, 2012).

A descrição do acoplamento forte para a supercondutividade é feita quantitativamente
pela teoria de muitos corpos de Migdal-Eliashberg (ME), que é baseada em um conjunto de
equações diagramáticas autoconsistentes (BOERI, 2020). Neste contexto, os bósons que mediam
o emparelhamento supercondutor podem ser fônons, plasmons ou flutuações de spin (BOERI,
2020).

Ademais, uma abordagem detalhada sobre a teoria de Midgal-Eliashberg usufrui de
conceitos e formulações muito complexas e diverge do objetivo desta seção, que é o de elucidar
teorias usadas na predição da temperatura crítica.

Apesar disso, deve-se mencionar a Equação 2.4, conhecida como expressão deMc-Millan-
Allen-Dynes, obtida para supercondutores que apresentam mediação por fônons, como mostrado
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por Boeri (2020):

Tc =
ωlog

1, 2κB
exp

[
− 1, 04(1 + λ)

λ− µ∗(1 + 0, 62λ)

]
, (2.4)

no qual a interação elétron-fônon é dada por λ, ωlog representa a frequência média logarítmica
dos fônons e µ∗ é o pseudopotencial de Morel-Anderson. A equação em questão, concorda com
conceitos provenientes da conhecida teoria ME para acoplamentos fortes.

Pode-se perceber que os esforços para teorizar a predição da temperatura crítica foram
múltiplos, como as Equações 2.3 e 2.4 elucidam. Entretanto, como já anteriormente discutido,
nenhuma formulação por si foi capaz de descrever com satisfatoriedade a temperatura crítica em
diferentes faixas de temperatura.

2.2 Aprendizado de Máquina: Uma visão geral

A inteligência artificial (IA) foi considerada uma área teórica por muito tempo, sendo
empregada em alguns poucos problemas (FACELI et al., 2011). Segundo Faceli et al. (2011), foi
a partir da década de 1970 que a IA começou a ser mais empregada na resolução de problemas,
através de técnicas computacionais.

Foi o aumento da complexidade dos problemas e o acesso aos grandes números de dados
gerados nas últimas décadas, que propiciaram a necessidade da utilização de ferramentas e
técnicas computacionais mais aprimoradas (FACELI et al., 2011). Nesse contexto, as técnicas de
IA foram oportunas para desenvolver, a partir de uma experiência, hipóteses e funções capazes
de descrever determinado problema (FACELI et al., 2011).

Faceli et al. (2011) define então que o desenvolvimento de uma hipótese ou função, a qual
descreve determinado problema a partir de uma experiência passada, é chamado de aprendizado
de máquina - ou em inglês machine learning (ML).

Em suma, o aprendizado de máquina busca otimizar parâmetros que compõem funções e
hipóteses genéricas, a partir de um conjunto de dados (ALPAYDIN, 2020). Assim, o aprendizado
de máquina consiste em executar um programa de computador, que ajusta os parâmetros de
determinado modelo matemático, a partir dos dados de treinamento – dados usados no processo
de ajuste dos modelos matemáticos. Posteriormente, o modelo ajustado é capaz de descrever o
problema proposto pelos dados de treinamento.

O aprendizado de máquina usa teorias estatísticas na construção de modelos matemáticos,
pois sua tarefa principal é a inferência amostral (ALPAYDIN, 2020). O processo de ajuste de
parâmetros perante os dados, é chamado de treinamento. No treinamento, é necessário fornecer
algoritmos capazes de resolver o problema de otimização e de processamento de um grande
volume de dados (ALPAYDIN, 2020).
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Durante o processo de treinamento, o ajuste de parâmetros das funções matemáticas
pode não generalizar bem o problema proposto, podendo ocorrer duas situações: o sobreajuste
(overfitting) ou o subajuste (underfitting) nos dados de treino.

No caso de sobreajuste, o modelo matemático praticamente memoriza os dados, fazendo
com que uma função ajustada passe por praticamente quase todos os pontos do conjunto de dados
de treino (GÉRON, 2019). Já o subajuste ocorre quando o modelo é incapaz de ajustar seus
parâmetros, não encontrando padrões nos dados de treino (FACELI et al., 2011). O subajuste é o
caso inverso do sobreajuste.

Como os modelos de ML se otimizam através de padrões encontrados nos dados, seus
desempenhos dependem da qualidade dos mesmos (BISHOP, 2006). Nessa perspectiva, no
contexto do aprendizado de máquina, o pré-processamento e a análise dos dados são uma das
etapas mais importantes (GÉRON, 2019).

Na etapa de análise de dados, busca-se caracterizar cada característica do conjunto de
dados, levantando qual o seu tipo e sua escala. Uma característica representa uma coluna (campo)
na base de dados - ou até mesmo uma coluna em uma matriz de dados X, na qual cada linha
representa uma amostra xi qualquer. Além disso, nesta etapa os dados devem ser explorados
através de diversas medidas e gráficos, para o seu entendimento (ALPAYDIN, 2020).

O pré-processamento busca adequar os dados às tarefas as quais eles serão expostos.
Nesta etapa é comum avaliar a mudança do formato de dado em cada característica ou fazer a
limpeza de dados discrepantes ou incompletos (ALPAYDIN, 2020).

Para este trabalho, os dados foram explorados graficamente e estatisticamente, como
exibido na Seção 4.1. Além disso, como a base de dados usada foi criada pela metodologia deste
trabalho, os cuidados com a estrutura e representatividade foram garantidos no desenvolvimento
apresentado na Seção 3.2. Dessa forma, a etapa de pré-processamento neste trabalho se baseou
em avaliar a redução da dimensionalidade dos dados.

Como o presente trabalho busca predizer a temperatura crítica dos supercondutores, a
partir de medidas estatísticas (características) extraídas de suas fórmulas químicas, utilizaram-se
algoritmos de regressão baseados em modelos preditivos.

Os modelos preditivos buscam desenvolver um estimador para predizer um rótulo (Tc
neste caso) com base em um domínio conhecido (FACELI et al., 2011). Como estamos diante
de um problema de regressão, busca-se desenvolver uma função que associe um conjunto de
características a um rótulo.

Para elucidar melhor o que foi discutido até aqui, este parágrafo se baseia na enunciação
de Faceli et al. (2011). Para um conjunto de observações conhecidas {(xi, f(xi)) , i = 1, ..., n},
f simboliza uma função não conhecida, que associa um vetor de características xi a um rótulo yi
(Tc), que neste caso é o domínio de f . De acordo com Faceli et al. (2011), um modelo de ML
aprende uma aproximação f̂ para a função desconhecida f . A aproximação f̂ é utilizada para
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prever o valor de f para um novo vetor de características x (FACELI et al., 2011). A essência de
f pode ser descrita pela equação abaixo:

yi = f(xi) ∈ <, (2.5)

no qual yi representa o valor para um rótulo conhecido.

A qualidade de um estimador em fazer previsões é mediada por uma função de custo,
que avalia o quão bem uma estimativa se aproxima do esperado (ALPAYDIN, 2020). A função
de custo é usada para aprimorar o modelo, que tende a minimizá-la. Por mais que cada algoritmo
possa possuir uma função de custo, em problemas de regressão geralmente ela está associada ao
erro quadrático médio, representado abaixo (FACELI et al., 2011):

MSE
(
f̂
)

=
1

n

n∑
i=1

(
yi − f̂(xi)

)2
, (2.6)

no qual n é o número de instâncias do conjunto avaliado, yi é o valor conhecido e f̂(xi) o predito
pelo modelo.

A Equação 2.6 representa o erro da hipótese f̂ em relação à diferença entre o valor
estimado f̂(xi) e o valor esperado yi (FACELI et al., 2011). O MSE está vinculado com o
RMSE, que é a medida de desempenho típica em problemas de regressão. O RMSE é usado
para quantificar os erros de um modelo de ML em suas previsões, dando um peso maior aos
grandes erros (GÉRON, 2019). A equação para o RMSE, deriva da Equação 2.6 da seguinte
forma:

RMSE
(
f̂
)

=

√
MSE

(
f̂
)
. (2.7)

Outra medida de desempenho empregada nesta monografia é o coeficiente de deter-
minação R2, que representa a proporção de variância explicada pelas variáveis independentes
(características) do modelo (SCIKIT-LEARN, 2020d). Assim, o R2 explica também o quão bem
as amostras nunca vistas pelos modelos serão previstas por ele (SCIKIT-LEARN, 2020d). A
melhor pontuação para R2 é 1 e a pior 0. A expressão abaixo representa como o R2 foi calculado
neste trabalho (SCIKIT-LEARN, 2020d):

R2
(
y, f̂
)

= 1−

∑n
i=1

(
yi − f̂ (xi)

)2
∑n

i=1 (yi − y)2
, (2.8)

no qual y = 1
n

∑n
i=1 yi.

Nesta monografia o aprendizado supervisionado foi empregado. Basicamente, para este
tipo de aprendizado os dados usados para treinar o modelo incluem as soluções desejadas, chama-
das também de rótulos (GÉRON, 2019). Exemplificando com a problemática deste trabalho, ao
entregar os dados calculados para cada supercondutor, apresenta-se ao modelo a sua temperatura
crítica.
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Desse modo, suponha-se que os dados estatísticos obtidos através da fórmula química de
determinado supercondutor, sejam representados pelo vetor de atributos xi. Para o algoritmo em
questão, são apresentados o conjunto xi e a temperatura crítica (yi), associada a xi. Assim, ao
apresentar xi e o seu devido valor yi, o modelo aprimora os parâmetros de uma f̂ genérica, de
forma que ela se aproxime da função desconhecida (Equação 2.5), que representa a dependência
ideal da temperatura crítica aos atributos xi.

Uma forma de saber se o modelo está generalizando bem o problema analisado, é testá-lo
na predição de novos rótulos, a partir de novos valores de características (x) (GÉRON, 2019).
Uma opção para avaliar a predição de modelos sobre novos dados, pode ser a divisão do conjunto
de dados em conjunto de treino e conjunto de teste (GÉRON, 2019). Assim, é possível treinar o
modelo utilizando os dados do conjunto de treino, e avaliá-lo utilizando o conjunto de teste.

Em literaturas como a de Bishop (2006) e Géron (2019), é comum utilizar 80% dos dados
para treinar o modelo e o restante para testá-lo. Ao avaliar o modelo sobre a perspectiva dos dados
de teste, obtêm-se o erro de generalização (GÉRON, 2019). Ainda segundo Géron (2019), se
este erro for alto pode indicar que o modelo está sobreajustado aos dados usados no treinamento.

Como será discutido adiante neste trabalho, cada modelo (algoritmo) de ML possui
hiperparâmetros que regulam os parâmetros relacionados à sua formulação matemática. O
processo de controle dos hiperparâmetros é chamado de regularização, e busca restringir o ajuste
de parâmetros dos modelos aos dados (GÉRON, 2019). Dessa forma, o processo de regularização
busca evitar sobreajustes nos dados de treinamento, fazendo com que o modelo consiga descrever
o problema proposto da maneira mais genérica possível (SCIKIT-LEARN, 2020a).

Então, uma maneira de diminuir o erro de generalização é ajustar os hiperparâmetros,
de forma que eles possam generalizar melhor o modelo de ML empregado (GÉRON, 2019).
Entretanto, usar somente o conjunto de teste para avaliar determinado arranjo de hipeparâmetros,
pode conduzir o modelo a uma sobreposição sobre os dados de teste (SCIKIT-LEARN, 2020a).
Nessa situação, os hiperparâmetros são ajustados para conduzir melhores resultados no conjunto
de teste, ajustando o modelo a este conjunto.

Para contornar este problema, usa-se um procedimento denominado validação cruzada.
O processo de validação cruzada busca criar um conjunto de validação nos dados de treinamento,
de modo a deixar o conjunto de teste somente para avaliar o desempenho final do modelo treinado
(FACELI et al., 2011). Assim, a maior parte do conjunto de treino é usada para treinar o modelo
e uma pequena parte deste conjunto é usada para avaliá-lo.

O processo de treinamento é repetido algumas vezes, alternando os dados do conjunto
de validação. Desse modo, é possível testar o melhor arranjo de hiperparâmetros em cada ciclo
de treinamento (SCIKIT-LEARN, 2020a). Ademais, uma melhor explicação do processo de
validação cruzada, direcionada aos propósitos deste trabalho, é feita no Capítulo 3 por ser uma
das principais etapas da metodologia.



Capítulo 2. Fundamentação Teórica 11

Por fim, os modelos usados nesta monografia, bem como seus fundamentos, serão ex-
plicados nas próximas subseções. Todos os modelos nesta monografia foram treinados sobre a
perspectiva do aprendizado supervisionado. Além disso, todos os modelos foram submetidos ao
processo de validação cruzada para determinação dos melhores hiperparâmetros. A avaliação
dos resultados de cada modelo foi feita pelas medidas de desempenho RMSE e R2, sobre os
dados de teste.

2.2.1 Modelos lineares

Os modelos apresentados nesta seção têm como objetivo a tarefa de regressão, na qual f̂
é formulada a partir da combinação linear das características da base de dados. Assim, f̂ pode
ser descrita da seguinte forma (SCIKIT-LEARN, 2020c):

f̂ (w,x) = w0 + w1x1 + ...+ wpxp, (2.9)

no qual f̂ é a função que estima valores para os rótulos, p o número de características (ou
atributos), w = (w1, ..., wp) o vetor com os coeficientes (ou pesos dos atributos) e w0 é o termo
de polarização (ou interceptação). As colocações entre parênteses possuem o mesmo significado
dos termos que as precedem. Por exemplo, na literatura os nomes das colunas das bases de dados
podem ser chamados de atributos ou características.

2.2.1.1 Regressão Linear Múltipla - Método dos Mínimos Quadrados

Para este modelo, ocorre um ajuste dos coeficientes w = (w1, ..., wp) para minimizar a
soma residual dos quadrados entre o rótulo observado (Tc observada) e o previsto (Tc prevista).
Assim, para treinar este modelo deve-se resolver matematicamente a seguinte equação (SCIKIT-
LEARN, 2020c):

min
w
||Xw −Y||22, (2.10)

sendo X um conjunto de dados em que cada linha representa uma amostra qualquer xi. E Y

representa a matriz de uma coluna, que contém todos os rótulos (medidas de Tc). Em suma, uma
amostra xi de X, tem sua yi correspondente, sendo que yi está em Y.

A Equação 2.10 representa a função de custo para a Equação 2.9. Assim, ajustando os
coeficientes - parâmetros deste modelo - com dados conhecidos, é possível consolidar uma função
que generalize o problema de predição e possa predizer valores para novas amostras.

O ||.||2 na Equação 2.10 representa a norma euclidiana. Segundo Géron (2019), a norma
||.||k pode ser generalizada da seguinte forma:

||v||k =
(
|v0|k + |v1|k + ...+ |vn|k

) 1
k
, (2.11)

no qual v é um vetor como n elementos. A norma apresentada na Equação 2.10 corresponde ao
RMSE, apresentado na Equação 2.7 (GÉRON, 2019). Nessa perspectiva, é possível explicar
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porquê o RMSE é mais sensível a dados discrepantes. Como pode ser visto na Equação 2.11,
quanto maior o k mais a norma se concentra em grandes valores (GÉRON, 2019). É por esse
fato que a raiz do erro quadrático médio é mais usada do que o erro médio absoluto, no contexto
de ML.

Perante o parágrafo anterior, é possível inferir que a Equação 2.10 representa oMSE.
Dessa forma, a função de custo, neste caso, é simplesmente igual ao erro quadrático médio.

2.2.1.2 Elastic Net

O modelo Elastic Net foi empregado para tentar avaliar o efeito da regularização sobre o
método de regressão linear múltipla. O modelo Elastic Net é uma mistura dos modelos de Ridge
e Lasso. Para este modelo, pode-se controlar o hiperparâmetro ρ, que representa a taxa de mistura
entre os dois modelos mencionados (GÉRON, 2019).

A função de custo Elastic Net apresentada por Géron (2019), pode ser escrita da seguinte
forma:

J(w) = MSE(w) + ρα ‖w‖1 +
α(1− ρ)

2
‖w‖22 , (2.12)

o termoMSE(w) apresenta basicamente a função de custo mostrada na Equação 2.10 e α é um
hiperparâmetro, o qual seu valor indica o quão regularizado o modelo deve estar.

O termo com norma k = 2 (norma euclidiana) é proveniente da regressão de Ridge. Este
termo busca manter os parâmetros do modelo (neste caso ow) o mais reduzido possível (GÉRON,
2019). O hiperparâmetro α, que acompanha este termo, busca traduzir o quanto o modelo deve
ser regularizado. Segundo Géron (2019), se α for muito pequeno o modelo tende a uma regressão
linear múltipla, se for muito grande ele tende a fazer os pesos (w) ficarem próximos de zero.

O termo com norma k = 1 representa o modelo de regressão de Lasso. Devido à norma,
este modelo procura extinguir os pesos relacionados às características menos relevantes (GÉRON,
2019). Para este modelo, o hiperparâmetro α tem a mesma representatividade do modelo de
Ridge.

Quando o hiperparâmetro ρ é zero, a Equação 2.12 é igual a função de custo para o
modelo Ridge. Quando ρ é um, a Equação 2.12 é igual a função de custo do modelo Lasso.

Autores como Hamidieh (2018) e Bishop (2006) apresentam a função de custo como a
apresentada na Equação 2.12. Assim, o ajuste do modelo é proveniente da minimização de uma
função J . Por outro lado, a documentação da biblioteca Scikit-learn apresenta a função de custo
como a apresentada pela Equação 2.10.

É importante mencionar que os hiperparâmetros α e ρ são determinados pelo processo
de validação cruzada. Neste processo, várias combinações de α e ρ são testadas no conjunto de
treino. A combinação que apresenta os melhores valores para a medida de desempenho RMSE,
é a escolhida para ser incorporada ao modelo.
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2.2.2 Máquinas de Vetores de Suporte - Support Vector Machine (SVM)

Seguindo a explicação teórica de Faceli et al. (2011), o modelo de SVM para a tarefa
de regressão visa encontrar uma função h(x) que gere saídas contínuas perante os dados de
treino, desviando um valor máximo de ε do rótulo esperado. Além disso, requer-se para h(x)

uniformidade e regularidade (FACELI et al., 2011).

Considerando inicialmente um comportamento linear para h(x), tem-se o hiperplano
(FACELI et al., 2011):

h(x) = w · x + b, (2.13)

no qual w · x representa o produto escalar entre os vetores w e x, w neste caso representa um
vetor normal ao hiperplano e b

||w|| com b ∈ < é a distância do hiperplano em relação à origem.

O modelo então é ajustado para encontrar um pequeno w para a Equação 2.13, isto é
feito através da minimização da norma ||w|| como segue (GÉRON, 2019):

min
w,b

1

2
w2. (2.14)

Além disso, a otimização mostrada na Equação 2.14 é sujeita às seguintes restrições (FACELI et
al., 2011): {

yi −w · xi − b ≤ εi

w · xi + b− yi ≤ εi
(2.15)

Nessa perspectiva, Faceli et al. (2011) resume que a função linear busca associar os pares (xi, yi)

do conjunto de treino com uma precisão de ε. Ademais, este processo pode ser elucidado na
Figura 2.3.

Dessa forma, como sugere a Figura 2.3, espera-se obter uma h na qual os dados usados
no treinamento fiquem na região sombreada ao redor dela.

Em problemas reais dificilmente é possível enquadrar os dados nas margens delimitadas
por ε e −ε. Nessa perspectiva, para lidar com ruídos e outliers, deve-se introduzir variáveis de
folga, que possibilitam que algumas amostras predigam fora da margem ε e −ε, elucidada na
Figura 2.3 (FACELI et al., 2011).

Desse modo, Faceli et al. (2011) propõe o seguinte problema de otimização:

min
w,b,ξ,ξ

1

2

∥∥w2
∥∥+ C

(
n∑
i=1

ξi + ξi

)
, (2.16)

no qual ξ e ξ representam as variáveis de folga e C uma variável que equilibra a regularização de
h com a quantidade de desvios permitidos. Assim, obtêm-se as seguintes restrições:

yi −w · xi − b ≤ εi + ξ

w · xi + b− yi ≤ εi + ξ

ξi, ξi ≥ 0

(2.17)
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Figura 2.3 – Ilustração do procedimento realizado por um SVM para uma tarefa de regressão

Fonte: Faceli et al. (2011)

É muito comum no âmbito do aprendizado de máquina, resolver os problemas de oti-
mização empregando a formulação lagrangiana. Por mais que explicar a empregabilidade da
formulação lagrangiana esteja fora dos objetivos deste trabalho, ela se faz necessária para elucidar
a utilização dos SVMs na metodologia apresentada.

Resumidamente, para resolver problemas de otimização, como apresentado na Equação
2.16, modela-se uma expressão lagrangiana que abranja o problema de otimização em questão, e
suas restrições associadas a um multiplicador de lagrande. Dessa forma, a partir de uma expressão
lagrangiana, calculam-se suas derivadas parciais para o valor nulo. Os resultados das derivações
parciais são usados para substituir termos na equação lagrangiana inicial.

Usando o procedimento apresentado no parágrafo anterior para as Equações 2.16 e 2.17
é possível obter a seguinte expressão (FACELI et al., 2011):

max
α,α
−1

2

n∑
i,j=1

(αi − αi) (αj − αj)K(xi,xj)− ε
n∑
i=1

(αi − αi) +
n∑
i=1

yi (αi − αi) , (2.18)

no qual αi e αi são variáveis (multiplicadores) de Lagrange e K é a função kernel. K emerge do
produto interno gerado na manipulação da Equação 2.17 na formulação lagrangiana. As restrições
para a Equação 2.18 ficam (FACELI et al., 2011):{∑n

i=1 (αi − αi) = 0

αi, αi ∈ [0, C]
(2.19)

Para finalizar a explicação do uso da formulação lagrangiana, deve-se colocar que dentro
da margem, entre ε e −ε, as variáveis de Langrange são zero.
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Dessa forma, o problema de otimização para as SVM é de maximizar a Equação 2.18.
No âmbito desta monografia, a Equação 2.18 foi otimizada para três funções de kernelK. Estas
funções podem ser extraídas da Tabela 2.1. Os parâmetros σ, κ e d são determinados para cada
problema.

Tabela 2.1 – Tipos de Kernel avaliados na otimização das SVM

Tipo de kernel Função K(xi,xj) Parâmetros
Polinomial (δ (xi · xj) + κ)d δ ,κ e d

RBF exp
(
−σ ‖xi − xj‖2

)
σ

Fonte: Faceli et al. (2011)

Além dosK apresentados na Tabela 2.1, a condição linear para as SVM foi avaliada para
a seguinte configuração do Kernel Polinomial: δ = 1, d = 1 e κ = 0. Quando não calculados
pelo próprio algoritmo, os parâmetros σ, κ e d foram obtidos através do processo de validação
cruzada.

2.2.3 Árvores de Decisão

As árvores de decisão são comumente empregadas para as tarefas de classificação. Entre-
tanto, elas podem ser usadas para tarefas de regressão, conseguindo descrever problemas bastantes
complexos (GÉRON, 2019). Baseando-se na fundamentação de Géron (2019), o funcionamento
de uma árvore de decisão pode ser descrito a partir do exemplo ilustrado pela Figura 2.4.

Figura 2.4 – Exemplo de uma árvore de decisão direcionada à tarefa de regressão

Fonte: Géron (2019)
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A Figura 2.4 representa o desenvolvimento de uma árvore de decisão para uma carac-
terística, ou seja, representa apenas um atributo do conjunto de treino. Em problemas reais, a
árvore de decisão engloba todas as características do conjunto de treino em sua construção.

Supõe-se que determinada característica x1 apresente o valor 0,8 e supõe-se também
que a árvore da Figura 2.4 prediga Tc a partir de x1. Assim, uma amostra xi com característica
x1 = 0, 8 entra na raiz da árvore (primeiro quadrado de cima para baixo na Figura 2.4). Na raiz,
ela encontra a condição x1 ≤ 0, 1973. Para esta condição, a amostra apresenta o resultado Falso,
assim, ela caminha para a direita na Figura 2.4. E dessa forma, a amostra vai passando por cada
nível (profundidade) da árvore, até atingir o último nó da folha construído.

Para a mostra em questão, o nó da folha prediz uma temperatura crítica de 0,6146 K. A
previsão neste nó é simplesmente a média dos rótulos das 46 amostras de treinamento, que foram
empregadas em sua construção (GÉRON, 2019). Além do valor previsto, é possível recolher
informações sobre oMSE da predição, que deriva das 46 amostras que compõem o nó.

A Figura 2.5 apresenta a f̂ , que emerge da árvore da Figura 2.4, para uma profundidade
igual a 2 e a 3. O valor previsto por f̂ em cada intervalo da Figura 2.5, refere-se à média dos
rótulos das amostras de treinamento no intervalo (GÉRON, 2019).

Figura 2.5 – Previsão do modelo Árvore de Decisão com profundidade 2 (imagem do lado
esquerdo) e profundidade 3 (imagem do lado direito)

Fonte: Géron (2019)

Exemplificado pela Figura 2.5, o algoritmo busca dividir as regiões de diferentes maneiras,
de modo a fazer f̂ se aproximar ao máximo das amostras de treino (GÉRON, 2019).

Ademais, o algoritmo do modelo Árvore de Decisão tende a minimizar a seguinte função
de custo (GÉRON, 2019):

J(k, tk) =
mesquerda

m
MSEesquerda +

mdireita

m
MSEdireita, (2.20)

no qual k representa uma característica qualquer, tk um limiar (x1 ≤ 0, 1973, por exemplo),
mesquerda/direita número de amostras em cada divisão (subconjunto),m o número de amostras
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avaliadas pela função de custo eMSEesquerda,direita o erro quadrático médio dos subconjuntos a
serem divididos. Assim, têm-se o cálculo em cada nó (GÉRON, 2019):{

MSEnó =
∑

i∈nó(f̂nó − yi)2

f̂nó = 1
mnó

∑
i∈nó yi

(2.21)

Após o algoritmo domodelo Árvores de Decisão dividir o subconjunto dos dados de treino
em dois, utilizando a Equação 2.20, ele utiliza os mesmos artifícios para os outros subconjuntos,
até alcançar uma árvore como a da Figura 2.4 (GÉRON, 2019).

As árvores de decisão são bastantes propensas a sobreajustes, pois podem se desenvolver
até suas estruturas chegarem bem próximas aos dados de treinamento (GÉRON, 2019). Assim,
regularizar alguns hiperparâmetros das árvores de decisão é fundamental para generalizar bem
uma hipótese f̂ . A Figura 2.6 mostra o comportamento de uma f̂ não regularizada e outra f̂ com
restrições no número mínimo de amostras que um nó da folha deve possuir.

Figura 2.6 – Efeito da regularização no modelo Árvore de Decisão

Fonte: Géron (2019)

O gráfico à esquerda na Figura 2.6 apresenta sobreajuste nos dados de treino e o gráfico
à direita apresenta uma f̂ regularizada para o modelo Árvore de Decisão. As regularizações
mais empregadas nas árvores de decisão são nos seguintes hiperparâmetro (GÉRON, 2019):
profundidade da árvore; número mínimo de amostras que um nó deve ter antes de se dividir;
número mínimo de amostras que um nó da folha deve possuir.

Ressalta-se aqui, que os melhores valores para os hiperparâmetros são levantados no
processo de validação cruzada.

2.2.4 Floresta Aleatória e Árvores Extremamente Aleatórias

As Florestas Aleatórias e as Árvores Extremamente Aleatórias fazem parte de uma técnica
conhecida como Ensemble Learning. Esta técnica se baseia em usar diversos estimadores para
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melhorar os resultados dos estimadores individuais (GÉRON, 2019). Até o presente momento,
apenas estimadores individuais foram abordados nesta monografia.

Ambos modelos tratados nesta seção são baseados na construção de diversas árvores de
decisão. Assim, esses modelos se baseiam nessas árvores para fazerem suas previsões. Além de
usarem diversas árvores de decisão, os modelos desta seção buscam criar árvores de decisão com
critérios aleatórios. Dessa forma, eles tendem a criar diversas árvores de decisão diferentes.

Como foi mostrado na Seção 2.2.3, as árvores de decisão tendem a escolher a melhor
característica para dividir um novo nó. Apesar disso, o modelo Floresta Aleatória busca escolher
aleatoriamente uma característica para dividir um nó, no momento de construção de suas árvores
de decisão (GÉRON, 2019). Assim, as Florestas Aleatórias tendem a gerar uma ampla diversidade
de árvores, como já mencionado.

Ademais, a aleatoriedade injetada nas florestas, no momento de construção das árvores,
faz com que as árvores de decisão possuam erros de previsão dissociados. Por outro lado, por
possuir um grande número de árvores estes erros são corrigidos, uma vez que a predição dos
modelos ensemble é feita pela média das predições dos estimadores (SCIKIT-LEARN, 2020b).

As Florestas Aleatórias atingem uma variação reduzida por combinarem diversas árvores,
assim, elas se submetem a um aumento no viés (SCIKIT-LEARN, 2020b). A pequena variância
atingida é usualmente associada a uma predição mais generalizada (SCIKIT-LEARN, 2020b).

Nas Árvores Extremamente Aleatórias, além de escolher uma característica aleatória
para dividir um nó das árvores de decisão, o limiar desta característica também é escolhido
aleatoriamente (GÉRON, 2019). Este fato torna o treinamento das Árvores Extremamente Ale-
atórias mais rápido do que o das Florestas Aleatórias, uma vez que encontrar o melhor limiar
para determinada característica é uma das tarefas mais demoradas no processo de construção das
árvores de decisão (GÉRON, 2019). Como afirma Géron (2019), troca-se novamente um maior
viés por uma menor variância no modelo Árvores Extremamente Aleatórias.

Por fim, foi possível entender que ambos modelos usufruem da construção aleatória de
diversas árvores de decisão. Além disso, apresentou-se que a utilização dessas árvores pode
diminuir a variância das predições, a um custo no aumento do viés. Em questão da aleatoriedade
nas árvores de decisão, pode-se afirmar que as Árvores Extremamente Aleatórias produzem
árvores muito mais aleatórias que as Florestas Aleatórias.

Para estes modelos, os hiperparâmetros avaliados pelo processo de validação cruzada
foram os mesmos das árvores de decisão. Entretanto, nos modelos desta seção foi avaliado
também a quantidade de árvores de decisão construídas.
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2.2.5 Gradient Boosting

O Gradient Boosting é um método ensemble que usufrui de diversos estimadores. Nesta
monografia, os estimadores usados para o modelo Gradient Boosting também são árvores de
decisão. Ao invés de construir diversos estimadores independentes, o algoritmo deste modelo
busca adicioná-los sequencialmente, de modo que eles possam corrigir os erros residuais dos
estimadores anteriores (GÉRON, 2019).

A seguinte formulação matemática pode ser feita para o Gradient Boosting (SCIKIT-
LEARN, 2020b):

f̂i = FM(xi) =
M∑
m=1

hm(xi), (2.22)

no qual f̂i representa a estimação para um yi, com base em uma amostra genérica xi. Além disso,
hm são os estimadores para as árvores de decisão eM é o número de estimadores (árvores).

Como mencionado, os estimadores são adicionados sequencialmente, assim, podem ser
descritos da seguinte forma (SCIKIT-LEARN, 2020b):

Fm(x) = Fm−1(x) + hm(x), (2.23)

no qual hm (uma nova árvore) é introduzido ao estimador anterior (Fm−1) para minimizar a soma
de suas perdas (Lm). Desse modo, a minimização da soma das perdas pode ser escrita da seguinte
maneira (SCIKIT-LEARN, 2020b):

hm = min
h
Lm = min

h

n∑
i=1

l(yi, Fm−1(xi) + h(xi)). (2.24)

Para esta monografia, l(yi, F (xi)) representa uma função de perda com base no método
dos mínimos quadrados. Os mínimos quadrados são escolhidos por possuirem robustez em
resolver problemas de regressão (SCIKIT-LEARN, 2020b).

O F0 inicial, que emerge da Equação 2.24, representa a média dos rótulos quando
l for referência ao método dos mínimos quadrados (SCIKIT-LEARN, 2020b). Expandindo
l(yi, Fm−1(xi) + hm(xi)) por aproximação de Taylor, tem-se (SCIKIT-LEARN, 2020b):

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F (xi))

∂F (xi)

]
F=Fm−1

. (2.25)

Como l é diferenciável, o cálculo de
[
∂l(yi,F (xi))
∂F (xi)

]
F=Fm−1

é resolvido facilmente para uma forma
fechada. Chamando o termo das derivadas parciais de gi, o seguinte problema de otimização é
alcançado:

hm ≈ min
h

n∑
i=1

h(xi)gi. (2.26)

A Equação 2.26 sugere que o estimador hm busca prever um gradiente negativo das
amostras anteriores durante seu reajuste, configurando um gradiente descendente (SCIKIT-
LEARN, 2020b).
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Para regularizar as correções nos estimados, é introduzido um termo denominado taxa
de aprendizagem. Assim, cada vez que uma árvore (hm) é adicionada ao modelo, a taxa de
aprendizado dita o quanto ela vai corrigir o gi do estimador anterior a ela. Segundo Scikit-learn
(2020b), a taxa de aprendizado ν regulariza o modelo da seguinte forma:

Fm(x) = Fm−1(x) + νhm(x). (2.27)

A Figura 2.7 ilustra a atuação de novos hm (árvores) no modelo Gradient Boosting. Como
pode ser visto na figura, novos estimadores tendem a se ajustar sobre os resíduos dos estimadores
anteriores. Dessa maneira, a combinação dos estimadores tende a gerar uma f̂ que descreve
melhor os dados de treino.

Figura 2.7 – Ajuste sobre os resíduos pelo método Gradient Boosting

Fonte: Géron (2019)

Os hiperparâmetros avaliados pelo processo de validação cruzada neste modelo foram:
número de estimadoresM ; taxa de aprendizagem ν; profundidade das árvores; número mínimo
de amostras para dividir um novo nó; número mínimo de amostras para que um nó da folha exista.



Capítulo 2. Fundamentação Teórica 21

2.2.6 Rede Neural Profunda

A partir da década de 1940, despertou-se o interesse em determinar modelos matemáticos
e computacionais inspirados na estrutura do sistema nervoso e na capacidade de aprendizagem
humana. McCulloch e Pitts (1943) foram dois dos pioneiros na área, desenvolvendo estudos sobre
descrição matemática dos neurônios artificias, de modo que pudessem realizar funções lógicas
(FACELI et al., 2011). Foram eles também responsáveis por demonstrar que uma rede formada
por esses neurônios possuíam grande capacidade de descrever funções complexas (FACELI et
al., 2011).

Por mais que outros pesquisadores importantes como Hebb (1949) - pesquisador da
capacidade de aprendizado dos neurônios - e Rosenblatt (1958) - criador da teoria dos perceptrons
- tenham alcançado grandes feitos na área, as pesquisas em sistemas neurais artificiais foram
interrompidas na década de 1970 (FACELI et al., 2011). Entretanto, o aumento da capacidade de
processamento dos computadores, o interesse em processamento paralelo e novas propostas de
configurações para as redes neurais, contribuíram para que as pesquisas na área retornassem na
década de 1980 (GÉRON, 2019).

As Redes Neurais Artificiais se baseiam no funcionamento do sistema nervoso humano.
Desse modo, elas são compostas por neurônicos artificias, que são densamente interconectados
(FACELI et al., 2011). Estes neurônios são capazes de computar funções matemáticas.

Segundo Faceli et al. (2011), nas arquiteturas das Redes Neurais Artificiais, as conexões
simulam as sinapses biológicas. Além disso, as conexões entre neurônios possuem pesos associa-
dos, que regulam a atividade do neurônio na rede. Os pesos das conexões são ajustados durante o
processo de aprendizado, que nesta monografia se configura como supervisonado. Ademais, estes
pesos podem indicar comportamento excitatório, quando forem positivos, e inibitório, quando
forem negativos (FACELI et al., 2011).

A Figura 2.8 apresenta uma estruturação simples para um neurônio artificial. Na figura,
as Entradas representam a admissão dos dados pela unidade lógica apresentada. Após a entrada
dos dados no neurônio, uma função matemática (representada por fa na Figura 2.8) é responsável
por ponderá-los e associá-los. A saída do neurônio representa a resposta dada por fa (FACELI et
al., 2011).

Para representar matematicamente as funções nos neurônios, Faceli et al. (2011) escreveu
a seguinte expressão para a entrada de um neurônio u:

u(x,w) =
d∑
j=1

xjwj, (2.28)

no qual x é um objeto com d características, podendo ser escrito como x = [x1, x2, ..., xd],
e w representa um vetor com os pesos de d terminais de entrada, podendo ser escrito como
w = [w1, w2, ..., wd]. Ressaltando o que já foi mencionado, os pesos associados a um neurônio
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Figura 2.8 – Estrutura simplificada de um neurônio artificial

Fonte: Faceli et al. (2011)

podem apresentar sinal positivo, negativo ou nulo. Quando um peso for nulo, implica que a
conexão associada a ele é inativa (FACELI et al., 2011).

Conforme apresentado por Faceli et al. (2011), a saída associada ao neurônio é regulada
por uma função de ativação fa. Exemplos dessas funções podem ser elucidados na Figura 2.9.
A função Linear, apresentada na Figura 2.9, implica que a saída assume o valor de u. A função
Limiar impõe uma saída igual 0 ou 1, é comum também usar uma função limiar que resulte
em 1 ou -1. Para a função Limiar, ilustrada na Figura 2.9, o neurônio se torna ativo quando a
soma u ultrapassa o limiar (fa(u) = 1) (FACELI et al., 2011). Já a função Signomial, usufrui de
diferentes inclinações e representa uma função de ativação contínua e diferenciável (FACELI et
al., 2011).

Figura 2.9 – Exemplos de funções de ativação

Fonte: Faceli et al. (2011)

Para este trabalho, utilizou-se uma função de ativação conhecida como ReLU, esta função
pode ser ilustrada pela Figura 2.10. A função ReLU é frequentemente usada em problemas de
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regressão (ALPAYDIN, 2020).

Figura 2.10 – Ilustração da função ReLu

Fonte: Pauly et al. (2017)

A rede perceptron é considera a mais antiga Rede Neural Artificial a ser submetida ao
processo de treinamento (GÉRON, 2019). Ela se estrutura em apenas uma camada de neurônio e
apesar disso, consegue atingir boa acurácia para diversos problemas de classificação (FACELI et
al., 2011).

A Figura 2.11 apresenta a estrutura da primeira rede perceptron, que era composta por
apenas um neurônio (FACELI et al., 2011). Ainda, como pode ser visto na Figura 2.11, a rede
perceptron possuía uma retina, que era responsável por pré-processar os objetos de entrada
(FACELI et al., 2011).

Figura 2.11 – Primeira rede perceptron

Fonte: Faceli et al. (2011)

O treinamento da rede perceptron se baseia na correção do erro de predição, perante os
pesos associados ao neurônio. Segundo Faceli et al. (2011), os ajustes nos pesos se dão pela
seguinte maneira:

wj(t+ 1) = wj(t) + νxji (yi − f̂(xi)), (2.29)
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no qualwj(t) é o valor do peso da j-ésima conexão no tempo t, ν é a taxa de aprendizado para este
caso, xji representa o valo da j-ésima característica da amostra de entrada xi e f̂(xi) é saída dada
pela rede, perante a saída esperada yi no tempo t. Assim como no caso do Gradient Boosting, a
taxa de aprendizado representa a expressividade do ajuste no peso wj(t + 1). De acordo com
Faceli et al. (2011), a magnitude da taxa de aprendizado infere na velocidade de convergência da
rede.

Por mais que as redes perceptrons tenham sido propostas para tarefas de classificação,
elas podem ser usadas também para regressão. A grande diferença entre a tarefa de classificação
e regressão está na função de ativação. Para tarefas de classificação, a saída deve ser discreta,
desse modo, uma função como a Limiar poderia ser empregada. Na regressão a saída f̂(xi) deve
ser contínua, assim, uma função de ativação como a Linear poderia ser incorporada. Ambas
funções de ativação usadas neste exemplo podem ser encontradas na Figura 2.9.

A descontinuidade histórica em pesquisas nesta área, mencionada no início desta seção,
se deve à monografia elaborada por Marvin Minsky e Seymour Papert (GÉRON, 2019). Nela,
eles destacaram diversas fraquezas nos perceptrons, relacionadas a problemas de modelagem
de funções não lineares (FACELI et al., 2011). Entretanto, algumas das limitações impostas por
Marvin e Seymour foram contornadas ao se implementar mais camadas de neurônios em redes
perpectrons (GÉRON, 2019). O sistema com diversas camadas de perceptrons foi denominado
Perceptron Multicamada (Multi Layer Perceptron (MLP) em inglês). Além disso, como retratado
por Géron (2019), quando uma Rede Neural Artificial possui mais de uma camada oculta -
camada entre as camadas de entrada e saída - ela é denominada Rede Neural Profunda.

A Figura 2.12mostra a configuraçãomais comumpara uma redeMLP. Nessa configuração,
todos os neurônios de uma camada l estão conectados a todos os neurônios de uma camada
l + 1 (FACELI et al., 2011). A camada de entrada é composta por todas as características xj

(j = 1, 2, ..., d), que compõem determinada amostra xi, como pode ser observado na Figura 2.12.
A camada de saída é arquitetada para cada tipo de tarefa, para problemas de regressão geralmente
a camada de saída possui apenas um neurônio, que entrega f̂(xi) como retratada a Figura 2.12.

O treinamento das MLP foi possível graças ao algoritmo back-propagation, baseado em
gradiente descendente (FACELI et al., 2011). Para a utilização do gradiente, deve-se garantir que
a função de ativação seja diferenciável e contínua perante as condições do problema.

O algoritmo back-propagation funciona da seguinte maneira: a camada de entrada trans-
mite os dados para a primeira camada intermediária, nesta camada, ocorre a aplicação da função
de ativação pelos neurônios, que geram valores de saída, os quais são utilizados pelas próximas
camadas como valores de entrada (FACELI et al., 2011). O processo continua até os neurônios
da camada de saída produzirem seus valores de saída f̂(xi). Então, f̂(xi) é comparado com o
valor desejado yi. Esta comparação representa o erro da rede perante o objeto xi (FACELI et al.,
2011).
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Figura 2.12 – Rede Neural Profunda para problemas de regressão

Fonte: o Autor

O valor do erro da rede é utilizado para ajustar os pesos de entrada dos neurônios da
camada de saída até a primeira camada intermediária (FACELI et al., 2011). A equação a seguir
apresenta o ajuste dos pesos para o algoritmo back-propagation (FACELI et al., 2011):

wjl(t+ 1) = wjl(t) + νxjδl, (2.30)

no qual wjl é o valor do peso entre o neurônio l e a j-ésima característica de uma amostra xi ou
j-ésimo valor de saída para um neurônio de camadas internas. δl representa o erro associado ao
neurônio l e xj o valor da saída de um neurônio ou o valor da característica.

Segundo Faceli et al. (2011), os erros são conhecidos apenas nos neurônios da camada de
saída. Desse modo, os demais precisam ser estimados. Nessa perspectiva, os erros dos neurônios
das camadas intermediárias são estimados com base nos erros da próxima camada (FACELI et al.,
2011). Assim, a estimativa começa do final da rede e termina na primeira camada intermediária.
A formulação empregada nas estimativas dos erros, pode ser apresentada a seguir (FACELI et al.,
2011):

δl =

{
f ′ael se nl ∈ csai

f ′a
∑
wlkδk se nl ∈ cint

(2.31)

Na Equação 2.31, nl representa o neurônio l, csai a camada de saída, cint a camada
intermediária, f ′a a derivada parcial da função de ativação e el o erro do neurônio da camada de
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saída (FACELI et al., 2011). O el possui a seguinte formulação quadrática (FACELI et al., 2011):

el =
1

2

k∑
q=1

(yq − f̂q)2. (2.32)

A derivada da função de ativação norteia o algoritmo sobre o ajuste dos pesos. Desse
modo, se f ′a for positiva, um ajuste deve ser feito no sentido de minimizá-la, uma vez que ela
representa o aumento da diferença entre yi e f̂i. Se negativa, f ′a representa contribuição para que
a saída da rede f̂i seja próxima de yi.

Por fim, com base na apresentação teórica mostrada nesta seção, os hiperparâmetros
avaliados nesta monografia para a Rede Neural Profunda foram: número de camadas; número de
neurônios por camada; números de dados que passam pela rede em cada ajuste da Equação 2.30;
número de vezes que todos os dados passam pela rede, denominado também como número de
época. Além disso, adotou-se a fa mostrada na Figura 2.9 e um ν = 0, 001.
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3 Metodologia

3.1 Fluxo de trabalho

A metodologia empregada nesta monografia pode ser resumida pelo fluxo de trabalho,
representado na Figura 3.1.

Figura 3.1 – Fluxo de trabalho para treinamento e avaliação de um modelo de machine learning

Fonte: o autor

O fluxo apresentado na Figura 3.1, apesar de exclusivo para este trabalho, é encontrado de
maneira semelhante em trabalhos como o de Mitchell, Michalski e Carbonell (2013). As seções
deste capítulo abordam cada uma das etapas apresentadas na Figura 3.1.

A implementação do desenvolvimento metodológico desta monografia e todos os resulta-
dos provenientes dela, podem ser encontrados em Bigoto (2020).

3.2 Geração e exploração dos dados

Como mencionado por Géron (2019), a maior parte do tempo em trabalhos de machine
learning é direcionada à preparação dos dados. A integridade e qualidade dos dados são cruciais
para a obtenção de bons resultados em treinamentos de modelos de machine learning (MIT-
CHELL; MICHALSKI; CARBONELL, 2013). Assim, esta etapa da metodologia foi executada
de forma minuciosa e precisa, uma vez que a base de dados se mostra como elemento fundamental
do aprendizado de máquina.

A geração dos dados, empregados no desenvolvimento deste trabalho, foi inspirada na
metodologia usada por Hamidieh (2018). A ideia central por trás do artigo de Hamidieh (2018) é
a geração dos dados de supercondutores, a partir de suas fórmulas químicas. A associação destes
dados com a temperatura crítica dos supercondutores, é usada para o treinamento de modelos de
machine learning, com base no aprendizado supervisionado.

As fórmulas químicas e as temperaturas críticas dos supercondutores foram extraídas de
um banco de dados do Instituto Nacional de Ciência dos Materiais do Japão (NIMS). Este banco
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de dados pode ser facilmente acessado em National Institute for Materials Science (2020), após
um simples cadastro.

Com as fórmulas químicas e as temperaturas extraídas de National Institute for Materials
Science (2020), foram calculados 81 características. Essas características foram calculadas a
partir das propriedades dos elementos, que compõem as fórmulas químicas dos supercondutores.

As propriedades elementares envolvidas no processo de construção das características
são: Massa Atômica [u.m.a]; Primeira Energia de Ionização [KJ/mol]; Raio Atômico [pm];
Densidade [Kg/m3]; Afinidade Eletrônica [KJ/mol]; Calor de Fusão [KJ/mol]; Condutividade
Térmica (C.T.) [W/(mK)]; Valência [sem unidades]. Os valores dessas propriedades para cada
elemento (átomo) foram obtidos de Mathematica (2020).

Para calcular as características, foram estimados p e w, como sugerido por Hamidieh
(2018). O p representa a razão de determinado elemento, com relação a outros em uma fórmula
química. Já o w, neste caso, representa a fração de determinada propriedade do elemento, em
relação a outros na fórmula química. Além de p e w, estimou-se um coeficiente intermediário em
função desses, representado por f(p, w) neste trabalho. Para elucidar o procedimento, Hamidieh
(2018) utilizou um exemplo que é descrito no próximo parágrafo.

Para o supercondutor Re6Zr1, t representa qualquer uma das 8 propriedades elementares
apresentadas anteriormente. Para esse exemplo, supõe-se que t represente a condutividade térmica.
Assim, para o Rênio t1 = 48W/(mK) e para o Zircônio t2 = 23W/(mK). Dessa forma:

p1 =
6

6 + 1
e p2 =

1

6 + 1
. (3.1)

Para w obtêm-se:

w1 =
t1

t1 + t2
=

48

71
e w2 =

t2
t1 + t2

=
23

71
. (3.2)

Em função das equações 3.1 e 3.2, têm-se:

A =
p1w1

p1w1 + p2w2

= 0.926 e B =
p2w2

p1w1 + p2w2

= 0.074. (3.3)

Com base no que foi representado nas equações 3.1, 3.2 e 3.3, Hamidieh (2018) determi-
nou as características baseando-se na Tabela 3.1.

Assim, como elucidado na Tabela 3.1, para cada uma das 8 propriedades elementares são
estimadas: média; média ponderada; média geométrica; média geométrica ponderada; entropia;
entropia ponderada; intervalo da propriedade (∆); intervalo ponderado; desvio padrão (σ); desvio
padrão ponderado.

Além das 80 características que emergem do parágrafo anterior, o número de elementos
em uma fórmula química também é considerado uma característica. Por fim, as 81 características
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Tabela 3.1 – Resumo do procedimento utilizado para extração de características a partir da
fómula química dos supercondutores. Apresentação de valores para o Re6Zr1

Fonte: Hamidieh (2018)

são reunidas com a temperatura crítica em uma base de dados, usada para treinar os modelos de
ML.

O processo de geração de dados, até o presente momento, pode ser resumido pela Figura
3.2. No contexto deste trabalho, elaborou-se um módulo em Python direcionado a realizar de
maneira robusta o processo mostrado na Figura 3.2. Assim, foi possível construir funções capazes
de tratar e fornecer dados para todas as etapas de desenvolvimento do projeto.

Figura 3.2 – Processo de geração da base de dados usada para treinamento de modelos de
machine learning neste trabalho

Fonte: o autor

Na etapa de extração do banco de dados do NIMS, foi possível a extração de 33.244
amostras de medidas de supercondutores. Entretanto, elaborou-se no módulo mencionado uma
função para validação dessas amostras. A função foi desenvolvida para encontrar erros nas
fórmulas químicas dos supercondutores e possíveis incoerências físicas (como identificação de
elementos inexistentes ou temperaturas críticas inviáveis). Assim, a função eliminou: campos do
banco de dados não preenchidos; valores de temperaturas críticas absurdos (como Tc >> 200K);
fórmulas químicas que possuíam números de elementos não exatos (como O5+X ou O7−Z);
elementos não existentes (como Y o).

Após a execução da função que verifica os dados do banco de dados do NIMS, restaram
21.539 amostras válidas de supercondutores. Dessa forma, elas puderam ser empregadas no
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processo de geração de características.

O módulo construído, responsável pelos dados, também possui uma função que é capaz de
traduzir uma fórmula química de um supercondutor em algo interpretável. Basicamente, a função
interpreta quais elementos estão presentes em uma fórmula química e quais suas proporções.
Além disso, ela é responsável por deixar todas as fórmulas químicas em um único formato e
verificar possíveis erros de preenchimento.

Figura 3.3 – Esquematização domódulo construído emPython para geração dos dados explicados
nessa seção

Fonte: o autor

Com a limpeza dos dados provenientes do banco de dados do NIMS e a possibilidade de
leitura das fórmulas químicas de maneira única, foi possível criar uma função que calcula p, w e
f(p, w) - representado porA eB na Equação 3.3 - para cada uma das 8 propriedades elementares.
Além de calcular esses termos, esta função também calcula as características elucidados na
Tabela 3.1 e as integra à característica que representa o número de elementos, constituindo as 81
características citadas. A saída desta função entrega os dados necessários para a construção da
base de dados usada no treinamento dos modelos de ML.

O funcionamento deste módulo, feito para tratamento dos dados, pode ser esquematizado
pela Figura 3.3. A partir da leitura da figura, é possível ver que o módulo em questão recebe
os dados das propriedades elementares e dos supercondutores. Feito isso, o módulo é capaz de
limpar e verificar os dados de entrada, padronizar e possibilitar cálculos com fórmulas químicas e
fornecer dados à diversas instâncias deste trabalho. Além disso, através da tradução das fórmulas
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químicas é possível calcular diretamente as características, que serão usadas como dados de
treinamento para os modelos de ML.

Nesse contexto, é interessante citar o Pandas, uma biblioteca criada para a linguagem
Python, que visa manipular e analisar dados (IDRIS, 2014). No presente trabalho, o Pandas foi
amplamente usado para manipulação dos dados, seja na importação ou exportação em relação
aos ambientes do Python. Além disso, ele foi muito empregado em funções e consultas às bases
de dados.

Além do Pandas, o Numpy também foi largamente explorado neste trabalho. Ele é uma
biblioteca do Python usada na computação científica, principalmente para cálculos matriciais
multidimensionais (IDRIS, 2014). Ainda, o Numpy possui diversas funções matemáticas prontas,
o que facilita a implementação de modelos matemáticos no Python.

Após a geração dos dados, realizou-se uma análise sobre eles. A análise teve o objetivo
de visualizar a distribuição dos dados e levantar indícios de correlação entre eles. A análise
usufruiu de recursos gráficos e estatísticos, e a correlação entre os dados foi estimada através do
Coeficiente de Correlação Pearson, apresentado na equação abaixo (GÉRON, 2019):

rx,y =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
, (3.4)

no qual n é o número de amostras, xi e yi são características distintas e x̄ = 1
n

∑n
i=1 xi, seguindo

o mesmo caminho para ȳ.

Portanto, a metodologia proposta por Hamidieh (2018), simplificada pela Figura 3.2,
foi executada através da criação de um módulo em Python. A esquematização desse módulo é
representada pela Figura 3.3. Ademais, a base de dados gerada a partir do módulo descrito nessa
seção, alimentou todos os modelos de ML explorados neste trabalho.

3.3 Escolha do algoritmo de ML

Como mostrado no Capítulo 2, modelos de regressão no aprendizado de máquina buscam
generalizar uma função capaz de descrever o problema exposto pelos dados. Assim, eles tendem
a ajustar uma função genérica aos dados apresentados.

Para a tarefa de regressão, utilizou-se nesta metodologia o aprendizado de máquina
fundamentado no aprendizado supervisionado. Salienta-se que o aprendizado supervisionado se
baseia em dados conhecidos (rotulados).

Para o treinamento do modelo, determinado supercondutor é representado pelas 81
características, provenientes da sua fórmula química. As 81 características são rotuladas pela
temperatura crítica do supercondutor. Assim, os modelos de ML buscam generalizar uma função
que associa as 81 características à temperatura crítica.
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Os algoritmos de machine learning, usados neste trabalho, foram: Regressão Linear
Simples, Elastic Net, Máquinas de Vetores de Suporte (SVM), Árvore de Decisão, Floresta
de Árvores Aleatórias, Árvores Extremamentes Aleatórias, Gradient Boosting e Rede Neural
Perceptron Multicamadas (Rede Neural Profunda).

Os algoritmos do parágrafo anterior estão apresentados em ordem crescente de comple-
xibilidade e robustez. Eles foram implementados nesta ordem, pois ao passar por cada um, foi
possível perceber a complexidade do problema em questão e a necessidade da implementação de
um algoritmo mais poderoso.

As implementações dos algoritmos Regressão Linear Simples, Elastic Net, Máquinas de
Vetores de Suporte, Árvore de Decisão, Floresta de Árvores Aleatórias, Árvores Extremamentes
Aleatórias e Gradient Boosting foram feitas pelo Scikit-learn. O Scikit-learn é uma biblioteca
de código aberto desenvolvida para aprendizado de máquina no Python (PEDREGOSA et al.,
2011). Ele é conhecido por sua fácil e flexível utilização, além de fornecer uma vasta gama
de módulos úteis para utilização no âmbito do machine learning. Além disso, o Scikit-learn é
bastante usado em empresas como Spotify, J.P.Morgan, Booking.com, MARS, Inria e muitas
outras (SCIKIT-LEARN, 2020e).

Para implementar o algoritmo de Rede Neural Profunda, utilizou-se o TensorFlow - uma
biblioteca de código aberto desenvolvida pelo Google para treinamento de modelos de machine
learning (GOOGLE BRAIN TEAM, 2020). O TensorFlow é extremamente recomendado para
treinamento de Redes Neurais, pois ele possibilita processamento paralelo em GPU. Ele é usado
por empresas como Coca-Cola, Google, Intel, Twitter e muitas outras (GOOGLE BRAIN TEAM,
2020).

Os algoritmos implementados pelo Scikit-learn foram processados em umamáquina física
- um notebook Dell Inspiron 3583 com 8 GB de memória RAM, processador i7 8a geração de 2
Ghz e sistema operacional Windows 10 64 bits. Além disso, estes algoritmos foram executados no
JupyterLab, uma plataforma que suporta a linguagem Python em uma interface web (JUPYTER,
2020).

A Rede Neural Profunda, sob o TensorFlow, foi implementada no Google Colab, um
ambiente virtual desenvolvido pelo Google para processamento de dados e treinamento de
modelos de ML em Python (GOOGLE COLAB, 2020). O ambiente é alocado em um servidor
virtual do Google, onde permite acesso a uma GPU, uma CPU e uma memória RAM de 13 GB.
A GPU e CPU possuem velocidades variadas relativas à disponibilidade do servidor em questão.

3.4 Obtenção de hiperparâmetros dos modelos

Como já mencionado, treinar determinado modelo de machine learning com todos os
dados provenientes da Seção 3.2, poderia conduzir a um sobreajuste (overfitting). No qual o
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modelo treinado poderia apenas repetir os rótulos dos dados de treinamento.

Para evitar esta situação, é comum segmentar a base de dados em um conjunto de
treino e outro de teste. Geralmente, o conjunto de treino corresponde à faixa de 70% a 80%
dos dados (GÉRON, 2019). Neste trabalho, os dados envolvidos no processo de treinamento
também correspondem a 80% da base de dados, assim, a maior parte dos dados é empregada
para treinamento do modelo. O conjunto de teste é usado para avaliar o resultado do treinamento.

Além de segmentar os dados em um conjunto de treino e outro de teste, é possível também
controlar os hiperparâmetros dos modelos de ML. O processo de controle dos hiperparâmetros
dos modelos é chamado de regularização pela literatura (GÉRON, 2019). O parágrafo a seguir
apresenta um exemplo, que mostra a relevância do processo de regularização.

Uma árvore de decisão, se não regularizada, pode crescer indefinidamente. Se não con-
trolada, ela pode se desenvolver ao ponto de se sobrepor aos dados de treino. Dessa maneira, a
regularização se torna uma aliada para a generalização, pois ela impõe restrições na construção
do modelo. Nesta situação, pode-se controlar a profundidade da árvore, o número de amostras
em cada nó ou até mesmo o número mínimo de amostras necessárias para crescer um novo nó.

A Tabela 3.3 apresenta os hiperparâmetros empregados no processo de regularização
em cada modelo. Vários hiperparâmetros foram avaliados em cada modelo, entretanto, os que
aparecem na Tabela 3.3 mostraram-se mais relevantes no processo de regularização. A Tabela
3.3 também apresenta os valores dos hiperparâmetros avaliados no processo de regularização.

Como pode ser percebido pela Tabela 3.3, o processo de regularização até o presente
momento, não mencionou o algoritmo usado no treinamento da Rede Neural Profunda; ele será
mencionado mais adiante nesta seção.

O processo de validação cruzada é usado para determinação dosmelhores hiperparâmetros
dos modelos apresentados na Tabela 3.3. A Figura 3.4 esquematiza o funcionamento do processo
de validação cruzada empregado nesta metodologia, para determinados hiperparâmetros de um
modelo de ML.

Analisando a Figura 3.4 é possível perceber que todos os dados gerados através da Seção
3.2 são divididos em conjunto de treino e teste, como mencionado no início dessa seção. O
processo de validação cruzada busca manter integro o conjunto de teste, usando somente o
conjunto de treino para obtenção dos melhores hiperparâmetros.

Além disso, o processo de validação cruzada divide igualmente o conjunto de treino. No
caso representado pela Figura 3.4, o conjunto de treino é dividido em 5 partes iguais. Assim, no
processo de treinamento 4 partes são usadas para treinar o modelo e 1 parte para avaliá-lo. Como
o conjunto de treino foi dividido em 5 partes, o processo de validação cruzada busca repetir o
procedimento de treinamento 5 vezes, alternando a parte dos dados usada para validação.

Para cada conjunto de dados treinado no processo de validação cruzada é gerada uma
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Figura 3.4 – Esquematização do processo de validação cruzada usado neste trabalho

Fonte: Adaptado de Scikit-learn (2020a)

medida de desempenho. Assim, é possível determinar o desempenho médio do modelo em relação
a um conjunto de hiperparâmetros. Após a medida de desempenho para determinados valores de
hiperparâmetros, outra combinação de hiperparâmetros passa pelo processo de validação cruzada.
A combinação com o melhor desempenho carrega os hiperparâmetros adequados para treinar
determinado modelo de ML. Neste trabalho, a medida de desempenho envolvida no processo de
validação cruzada é o R2.

Por fim, o conjunto de teste pode ser usado para avaliar o resultado final do treinamento
do modelo de ML, que incorpora os melhores hiperparâmetros. Para este trabalho, o conjunto de
treinamento também foi dividido em 5 partes no processo de validação cruzada, ao avaliar cada
combinação de hiperparâmetros dos modelos da Tabela 3.3.

A Figura 3.5 apresenta o procedimento total empregado na avaliação dos modelos de ML
neste trabalho. No procedimento, a validação cruzada encontra os melhores hiperparâmetros e
eles são usados para treinar o modelo de ML com todos os dados de treino. Feito isso, o conjunto
de teste é empregado para avaliação final do modelo de machine learning.

Assim como na Seção 3.2, um módulo em Python foi criado para executar o procedimento
apresentado na Figura 3.5. Basicamente, esse módulo é composto por duas funções, uma é
responsável por receber os dados gerados pelo procedimento descrito na Seção 3.2 e distribuí-los
aleatoriamente em um conjunto de treino e outro de teste. A distribuição aleatória foi empregada
no intuito de homogeneizar a distribuição dos dados nos conjuntos, de forma que eles pudessem
ter a mesma representatividade sobre o problema.
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Figura 3.5 – Procedimento usado para treinamento e avaliação dos modelos de ML

Fonte: Adaptado de Scikit-learn (2020a)

A outra função foi construída para testar todos os hiperparâmetros indicados na Tabela
3.3. Dessa forma, a função faz com que todos eles sejam submetidos ao processo de validação
cruzada (Figura 3.4). Após testar todas as possibilidades de combinação dos hiperparâmetros
perante determinado modelo, esta função indica os melhores hiperparâmetros com base no R2.
A melhor combinação dos hiperparâmetros é usada para treinar o modelo efetivamente, como já
mencionado. A Figura 3.6 resume o funcionamento do módulo em questão.

Além de garantir a aleatoriedade na distribuição dos dados e arquitetar o processo de va-
lidação cruzada, o módulo ilustrado na Figura 3.6 permiti controlar o consumo de processamento
da CPU. Para este trabalho, configurou-se que todos os núcleos do processador, exceto dois deles,
fossem usados nas tarefas de obtenção de hiperparâmetos. Esta configuração foi necessária, pois
ao permitir o processamento em todas unidade lógicas, a máquina física - mencionada na Seção
3.3 - se sobrecarregava.

A obtenção de hiperparâmetros para a Rede Neural Profunda exige uma abordagem
diferente. Treinar algoritmos de Redes Neurais demanda muito processamento e tempo. Dessa
forma, é inviável submeter este modelo de aprendizado de máquina à verificação de diversos
valores de hiperparâmetros. Além disso, não há embasamento teórico estabelecido para arquitetar
o sistema (hiperparâmetros) da Rede Neural (SILVA; SPATTI; FLAUZINO, 2010).



Capítulo 3. Metodologia 36

Figura 3.6 – Esquematização do módulo construído para dividir os dados e encontrar os melhores
hiperparâmetros

Fonte: o autor

Apesar de não existir um procedimento consolidado para definição de hiperparâmetros,
há preceitos para fazer com que o sistema da Rede Neural trabalhe melhor, evitando sobreajuste
nos dados. Para este trabalho, os hiperparâmetros analisados são: número de camadas ocultas da
rede; número de neurônios em cada camada; número de etapas de treinamento; quantidade de
dados usada para ajuste da rede em cada etapa.

Sabe-se, por Géron (2019), que apenas uma camada oculta pode modelar funções comple-
xas, se possuir um número adequado de neurônios. Por outro lado, Géron (2019) afirma que redes
com mais de uma camada possuem eficiência de parâmetros - capacidade de modelar funções
complexas com menos neurônios e mais velocidade. É comum o uso de duas camadas ocultas;
muitas camadas podem conduzir ao sobreajuste nos dados (SILVA; SPATTI; FLAUZINO, 2010).

Tabela 3.2 – Hiperparâmetros e seus valores analisados para o modelo de Rede Neural Profunda

Modelo Hiperparâmetros Valores Analisados
Número de camadas ocultas da rede 1, 2, 3

Número de neurônios em cada camada 162, 81, 41, 21, 11
Rede Neural Profunda

(Multi-Modal Perception) Número de etapas de treinamento Parada antecipada em
cada caso

Quantidade de dados usada para ajuste
da rede em cada etapa 32, 64, 128

Fonte: o autor

O número de neurônios na entrada e saída da rede é determinado pela necessidade da tarefa
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(MITCHELL; MICHALSKI; CARBONELL, 2013). Neste trabalho, a entrada é composta por 81
neurônios, número de características da base de dados. A saída é composta por um neurônio, que
entrega o valor da temperatura crítica prevista pela rede. Para os neurônios das camadas ocultas,
é comum dimensioná-los para a formação de um funil - cada vez menos neurônios (GÉRON,
2019).

A Tabela 3.2 apresenta os valores de hiperparâmetros testados neste trabalho para a
Rede Neural. Para o hiperparâmetro que representa o número de etapas de treinamento, foi
implementada uma parada antecipada. Essa parada representa o ponto, no qual o modelo para de
reduzir significantemente o erro sobre as predições de Tc. Além disso, a parada evita o início do
sobreajuste nos dados.

A quantidade de dados usada para ajuste da rede em cada etapa, foi testada para os valores
32, 64 e 128. Esses números representam a quantidade de dados que passam pela rede, antes
do otimizador realizar ajustes nos pesos relacionados aos neurônios (Equação 2.30). Poderiam
ser utilizados números maiores, entretanto, o aumento no valor desse hiperparâmetro não apre-
sentou melhoria nas predições. Além disso, o menor valor nesse hiperparâmetro indica maior
aproveitamento do conjunto de treino.

O otimizador Adam é utilizado neste contexto, para reduzir oMSE em cada etapa. Além
disso, a função de ativação em cada neurônio é a ReLU, por apresentar rapidez no cálculo do
gradiente do otimizador (GÉRON, 2019).

O conjunto de treino, que sai do módulo apresentado na Figura 3.6, é usado para o
processo de obtenção dos melhores hiperparâmetros da Rede Neural. Dentro deste conjunto, 20%
dos dados são usados para validar o processo de aprendizagem.

Apesar da validação cruzada não ser utilizada para obter os melhores hiperparâmetros
da Rede Neural, o processo apresentado na Figura 3.5 também pode ser empregado para ex-
plicar o ciclo de treinamento da Rede Neural. Entretanto, o que indica o melhor conjunto de
hiperparâmetros é o R2 e o RMSE de cada situação apresentada na Tabela 3.2.
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Tabela 3.3 – Hiperparâmetros e seus valores analisados em cada modelo de ML

Modelo Hiperparâmetros Valores Analisados
Regressão Simples Normalização dos dados True ou False

Elastic-Net Coefiente Ridge 0.00001, 0.00001, 0.001,
0.01, 0.1, 1, 10

Taxa de mistura 0, 0.01, 0.1, 0.5, 1
Grau 2, 3, 4, 5

SVM Polinomial C 1, 10, 100, 250, 500
ε 0.01, 0.1, 1, 10

SVM RBF C 1, 10, 100, 250, 500,
1000, 1500

ε 0.01, 0.1, 1, 10
SVM Linear C 0.01, 0.1, 1, 10, 50

ε 0.01, 0.1, 1, 10, 50

Profundidade da árvore 10, 20, 30, 40, 50, 60, 64,
65, 66, 67, 68, 70

Árvore de Decisão no mínimo de amostras em um nó 1, 2, 3, 4, 5, 6, 7
no mínimo de amostras para dividir um nó 1,3,5,7,9,10,11,12,13,14

no de árvores 100, 200, 300, 400, 500,
600, 700, 800, 850

Floresta Aleatória Profundidade das árvores 10, 20, 30, 40, 50, 60
no mínimo de amostras em um nó 1, 2, 3, 4, 5, 6, 7

no mínimo de amostras para dividir um nó 1,3,5,7,9,10,11,12,13,14

no de árvores 100, 200, 300, 400, 450,
475, 500, 600

Profundidade das árvores 10, 20, 30, 40, 50, 60
Árvores Extremamente

Aleatórias no mínimo de amostras em um nó 1, 2, 3, 4, 5, 6, 7

no mínimo de amostras para dividir um nó 1,3,5,7,9,10,11,
12,13,14

no de árvores 100, 150, 200, 300,
400, 500

Profundidade das árvores 10, 20, 30, 40, 50, 60
Gradient Boosting no mínimo de amostras em um nó 1, 2, 3, 4, 5, 6, 7

no mínimo de amostras para dividir um nó 1, 2, 3, 4, 5, 6, 7
Taxa de aprendizado 0.001, 0.01, 0.1, 0.5

Fonte: o autor

3.5 Treinamento dos modelos

Nesta metodologia, o conceito de treinamento já foi apresentado na seção anterior. Para
obtenção dos melhores hiperparâmetros, é necessário treinar os modelos com todas as combina-
ções de hiperparâmetros. A melhor combinação, a que apresenta o melhor desempenho, é usada
para treinar de fato o modelo de ML. Como já discutido, a Figura 3.5 apresenta o fluxo total de
treinamento de determinado modelo.
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Com os dados que emergem do módulo representado pela Figura 3.6, o modelo é treinado
utilizando o conjunto de treino (80 % dos dados da base). Após o treinamento com os melhores
hiperparâmetros, o conjunto de teste é usado para validar o treinamento e determinar a eficiência
do modelo.

É nesta etapa da metodologia, que o modelo de ML escolhido busca reconhecer determi-
nados tipos de padrões nos dados de treino (MICROSOFT, 2020). Assim, esta seção se dedica a
descrever o processo de fornecer determinado algoritmo, que com base nos dados vai ajustar o
modelo de machine learning.

O processo utilizado neste trabalho para implementar (treinar) um modelo de ML em
Python, seja usando o Scikit-learn ou o Tensorflow, é meramente ilustrado pela Figura 3.7.
Analisando a figura, pode-se perceber que a primeira etapa consiste no instânciamento do modelo.
O modelo aqui é evocado como uma classe da biblioteca (Scikit-learn ou Tensorflow).

Figura 3.7 – Etapas para implementar o processo de treinamendo dos modelos de ML em Python

Fonte: o autor

No Tensorflow, antes de chamar o algoritmo domodelo (instânciar a classe), foi necessário
criar a arquitetura do sistema da Rede Neural Profunda a ser avaliado. Dessa maneira, foi preciso
criar uma classe especificando as camadas e os neorônios por camada. A criação foi intermediada
pelo Keras, uma API de alto nível feita para redes neurais, que é executada como front-end no
TensorFlow (KERAS SPECIAL INTEREST GROUP, 2020).

O segundo passo elucidado na Figura 3.7, representa o momento no qual os melhores
hiperparâmetros são inseridos no modelo instânciado. Os hiperparâmetros alimentam os módulos,
que constituem o algoritmo do modelo de ML. Após alimentar os algoritmos, o método fit é
usado para treinar o modelo demachine learning. Esse método apresenta os dados de treinamento
ao algoritmo.

Para o modelo Máquinas de Vetores de Suporte, as 81 características foram normalizadas
como sugerido em Scikit-learn (2020f). A normalização se deve ao fato dos algoritmos das
Máquinas de Vetores de Suporte não serem invariáveis à escala. A normalização foi feita a partir
da equação a serguir:

z = (x− µ)/σ (3.5)

no qual x representa o valor de uma característica, µ a média das amostras de treinamento e σ o
desvio padrão das amostras de treinamento.
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O modelo de Rede Neural Profunda foi normalizado pelo mesmo motivo das Máquinas
de Vetores de Suporte, usando a Equação 3.5.

3.6 Teste e avaliação dos modelos

Esta seção aborda a metodologia utilizada para avaliar o processo de treinamento descrito
até a seção anterior. Com os modelos treinados, foi possível utilizá-los para realizar previsões.
Estas previsões foram feitas utilizando o método predict, que funciona de maneira semelhante ao
método fit. Ao passar dados de determinado supercondutor ao método predict, ele foi capaz de
prever a temperatura crítica do mesmo, com base no modelo treinado.

Para avaliar os modelos treinados, foram estimados o R2 e o RMSE, como mencionado
no Capítulo 2. Para estimá-los, comparam-se os valores das temperaturas críticas provenientes
do NIMS, com as temperaturas críticas estimadas pelos modelos de ML.

Nesta monografia, o R2 e o RMSE foram estimados para o conjunto de treino e para o
conjunto de teste, que emergiram do módulo representado pela Figura 3.6. A estimativa sobre o
conjunto de treino, revela a eficiência dos modelos na previsão de temperaturas críticas, usando
dados já apresentados a eles.

No conjunto de teste, o R2 e o RMSE são obtidos sobre dados inéditos aos modelos de
machine learning. Nessa perspectiva, a apuração da eficiência dos modelos sobre os dados de
teste foi a mais importante, pois representa a capacidade do modelo em prever a temperatura
crítica de supercondutores nunca treinados.

Para cada modelo de ML treinado foi construído um gráfico, que apresenta em um eixo a
temperatura crítica proveniente do NIMS e em outro a temperatura crítica prevista pelo modelo.
Além da plotagem das temperaturas previstas pelos modelos no gráfico, uma reta representando
R2 = 1 foi incorporada a ele. Deve-se mencioanar que os gráficos são construídos a partir das
previsões feitas com o conjunto de teste.

Para os melhores modelos - aqueles que apresentaram menor erro (menor RMSE) e
maior assertividade (R2 mais próximo de 1) - realizou-se uma análise sobre as previsões em
diferentes faixas de temperaturas. Além disso, eles foram utilizados para estimar a temperatura
crítica de alguns supercondutores, que aparecem em artigos do Departamento de Engenharia de
Materiais da EEL - USP. Esta estimativa permite comparar as temperaturas críticas estimadas
pelos modelos, com as temperaturas críticas que aparecem nos artigos.

Como resultado desta metodologia, para cada modelo de machine learning são apresen-
tados os melhores hiperparâmetros obtidos, o R2 e o RMSE para os conjuntos de treino e teste,
e o gráfico de temperatura crítica proveniente do NIMS versus a temperatura crítica prevista
pelo modelo. Ainda, para os melhores modelos são apresentados os resultados decorrentes ao
parágrafo anterior.
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4 Resultados

4.1 Apresentação dos dados

A Tabela 4.1 apresenta um resumo estatístico das temperaturas críticas usadas neste
trabalho. Os resultados apresentados na tabela em questão, são provenientes da base de dados
descrita na Seção 3.2.

Tabela 4.1 – Resumo estatístico dos dados de temperatura crítica

Contagem Média σ Valor Mín. 1◦ Quartil 2◦ Quartil 3◦ Quartil Valor Máx.
21539 34,12 K 34,19 K 0,00021 K 5,24 K 19,7 K 62 K 185 K

Fonte: o autor

Figura 4.1 – Distribuição das temperaturas críticas representadas pela Tabela 4.1

Fonte: o autor

Através da Tabela 4.1, é possível ver que neste trabalho foram utilizadas 21539 medidas
de temperaturas críticas de supercondutores. A média dessas temperaturas é de 34,12 K e desvio
padrão de 34,19 K. A menor temperatura crítica avaliada neste trabalho foi de 2, 1.10−4 K e a
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maior foi de 185 K. Os valores do primeiro, segundo e terceiro quartil são, respectivamente, 5,24
K, 19,7 K e 62 K.

A Figura 4.1 apresenta o resultado de uma função de distribuição para os dados de
temperatura crítica. Na figura, é possível ver a concentração dos dados de temperatura crítica em
diferentes faixas de temperaturas. Na Figura 4.2, pode-se observar a quantidade de amostras de
supercondutores ao longo do eixo da temperatura crítica. Constata-se uma maior concentração
de supercondutores em baixas temperaturas, como previa o primeiro quartil da Tabela 4.1.

A Figura 4.3 representa a função de distribuição para o conjunto de teste, que emerge
do módulo descrito pela Figura 3.6. Espera-se que o conjunto de teste represente uma curva
de distribuição de dados correlata à apresentada na Figura 4.1. Salienta-se que o conjunto de
teste é usado para avaliar o resultado final dos modelos, dessa forma, ele deve conter dados
representando todas as faixas de temperaturas.

Figura 4.2 – Número de supercondutores em diferentes faixas de temperaturas críticas

Fonte: o autor

O Coeficientede de Correlação Pearson, elucidado na Equação 3.4, foi calculado para
todos as características em relação à temperatura crítica. Os coeficientes mais expressivos são
apresentados na Figura 4.4.

Como pode ser observado na Figura 4.4, as características com maior correlação estão re-
lacionadas à massa atômica, afinidade eletrônica, raio atômico, condutividade térmica e valência.
Literaturas como as de Géron (2019) e Bishop (2006) levantam que características fortemente
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Figura 4.3 – Distribuição dos dados do conjunto de teste

Fonte: o autor

Figura 4.4 – Principais coeficientes de correlação das características em relação à temperatura
crítica

Fonte: o autor
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correlacionadas costumam contribuir mais com o ganho de informações, no processo de treina-
mento dos modelos de machine learning. A Figura 4.5 exibe a distribuição e o relacionamento
das características mostradas na Figura 4.4 e da temperatura crítica.

Figura 4.5 – Gráficos das características com maiores coeficientes de correlação da Figura 4.4

Fonte: o autor

Como muitas características foram calculadas na Seção 3.2, o sistema avaliado pelos mo-
delos de ML possuía 81 dimensões (81 características calculadas). É uma prática comum avaliar
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os resultados da redução de dimensionalidade nos dados. Dessa forma, as 81 características usadas
para estimar a temperatura crítica foram sujeitas ao processo de redução de dimensionalidade.

O processo da redução se baseou na projeção das 81 características em dimensões
inferiores, de forma a garantir a variância nos dados (GÉRON, 2019). O algoritmo PCA (Análise
dos Componentes Principais) da biblioteca Scikit-learn foi empregado no processo de redução
de dimensionalidade, por possuir eficiência na identificação do hiperplano - usado na projeção -
mais próximo aos dados (GÉRON, 2019).

A Figura 4.6 apresenta a variância dos dados em relação à dimensão da projeção. Como
pode ser visto, a variância dos dados é preservada mesmo em baixas dimensões. Uma projeção
em 6 dimensões preserva uma variância de 99,9%. Os dados com reduções de dimensionalidade
foram submetidos aos processos de treinamento. Nenhuma dimensão reduzida apresentou bom
resultado no treinamento dos modelos. No modelo de regressão linear múltipla, por exemplo, o
R2 chega a cair 50%, quando a variância é preservada em 99,9%.

Figura 4.6 – Preservação da variância dos dados com mudança na dimensão

Fonte: o autor
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4.2 Regressão linear múltipla

Para a regressão linear múltipla avaliou-se a normalização dos dados. Entretanto, a
normalização não mostrou melhoria nos resultados do modelo. Este modelo de regressão linear
mostrou R2 de 0,73 e RMSE de 17,66 K para os dados usados no treinamento. Para o conjunto
de teste, o modelo apresentou R2 de 0,75 e RMSE de 17,03 K. Para os dados normalizados, o
modelo obteve exatamente o mesmo resultado.

A Figura 4.7 mostra a temperatura crítica prevista pelo modelo versus a temperatura crítica
obtida do NIMS. Os dados usados na construção da Figura 4.7 são provenientes do conjunto de
teste, com dados nunca vistos pelo modelo. A Curva Ideal, representada no gráfico, refere-se à
situação na qual o R2 seria 1, ou seja, quando o modelo prediz Tc com assertividade de 100%.

Figura 4.7 – Tc prevista versus Tc observada para o modelo de regressão linear múltipla, com
R2 de 0,75 e RMSE de 17,03 K

Fonte: o autor

Como é possível ver na Figura 4.7, o modelo em questão prediz para alguns supercondu-
tores, temperaturas críticas menores que 0 K. Esta predição é extremamente inapropriada, pois
configura uma incoerência física. O modelo de regressão linear múltipla é utilizado geralmente
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como referência para outros modelos de regressão (HAMIDIEH, 2018).

4.3 Regressão Elastic-Net

Os melhores hiperparâmetros encontrados pelo processo de validação cruzada para a
regressão Elastic-Net foram α = 0.0001 e ρ igual a zero. O hiperparâmetro ρ sendo zero, indica
que o modelo Elastic-Net se equivalha ao modelo de regressão de Ridge. Com o hiperparâmetro
α sendo pequeno, implica que o modelo tendeu a regularizar pouco os coeficientes da regressão
linear.

O R2 e o RMSE para o conjunto de dados de treino foram de 0,73 e 17,74 K. Para o
conjunto de teste, essas medidas de desempenho foram de 0,75 e 17,15 K, respectivamente. Como
pode ser percebido, a tentativa de regularizar melhor o modelo de regressão linear múltipla com
o modelo Elastic-Net não foi satisfatória, uma vez que não houve melhora nos indicadores de
desempenho.

A Figura 4.8 apresenta o gráfico de Tc prevista versus Tc observada para o modelo de
regressão Elastic-Net, perante o conjunto de teste.

Figura 4.8 – Tc prevista versus Tc observada para o modelo de regressão Elastic-Net, com R2 de
0,75 e RMSE de 17,15 K

Fonte: o autor

Como pode ser visto na Figura 4.8, o problema de predição abaixo de 0 K permanece.
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4.4 Máquinas de Vetores de Suporte (SVM)

Para as SVM foram utilizados três funções de Kernel voltadas à tarefa de regressão.
Foram utilizados o Kernel Linear, Polinomial e o RBF Gaussiano.

4.4.1 Kernel Linear

Os melhores hiperparâmetros para o Kernel Linear foram C = 100 e ε = 10. O valor de
C e ε para este caso, se mostra um pouco elevado perante aos indicados por Scikit-learn (2020f)
e Géron (2019). Este fato conduz à conclusão que para o modelo obter melhores pontuações para
R2 e RMSE, ele se manteve menos regularizado.

O R2 e o RMSE do conjunto de treino para o Kernel Linear foram 0,73 e 17,84 K,
respectivamente. No conjunto de teste, o modelo obteve 0,75 para o R2 e 17,21 K para o RMSE.
A Figura 4.9, mostra o gráfico das predições versus a temperatura crítica observada.

Figura 4.9 – Tc prevista versus Tc observada para o modelo SVM Linear, com R2 de 0,75 e
RMSE de 17,21 K

Fonte: o autor
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4.4.2 Kernel Polinomial

Os resultados apresentados acima não mostraram ganhos nas medidas de desempenho.
Assim, uma abordagem polinomial foi elaborada e implementada através das SVM. Como a
dimensionalidade do problema envolvido neste trabalho é grande, uma abordagem polinomial
demandaria muito processamento e memória RAM, o que a tornaria inviável. As SVM permitem
implementar uma abordagem polinomial sem calcular a combinação de todas as características
envolvidas no processo. Elas usam um artifício matemático conhecido como truque de Kernel
(GÉRON, 2019).

Os melhores hiperparâmetros do modelo, encontrados pelo método da validação cruzada,
foram C = 500, ε = 1 e grau do polinômio igual a 2. Por mais que o hiperparâmetro C pareça
elevado, o modelo não mostrou sobreajuste nos dados, pois oR2 foi igual para o modelo de treino
e teste. O modelo apresentou R2 igual a 0,82 e RMSE igual a 14,52 K para o conjunto de treino
e 14,46 K para o conjunto de teste.

Figura 4.10 – Tc prevista versus Tc observada para o modelo SVM Polinomial, com R2 de 0,82
e RMSE de 14,46 K

Fonte: o autor

A Figura 4.10 mostra o gráfico Tc previsto versus Tc esperado para o conjunto de teste.
Como pode ser observado, a abordagem polinomial melhorou as medidas de desempenho de
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R2 e RMSE. Além disso, na Figura 4.10 é possível encontrar uma melhor distribuição das
temperaturas críticas ao longo da Curval Ideal.

Até o presente momento, nenhum modelo conseguiu generalizar bem a predição de Tc
em baixas temperaturas. É possível ver nos gráficos de Tc prevista versus Tc observada, que os
modelos predizem algumas temperaturas abaixo de 0 K, o que é uma incoerência física, como
já mencionado. Apesar disso, o ganho no desempenho apresentado nesta subseção conduziu à
investigação do modelo de SVM para o Kernel RBF Gaussiano.

4.4.3 Kernel RBF Gaussiano

Para o Kernel RBF Gaussiano, os melhores valores encontrados para os hiperparâmetros
foram C = 1000 e ε = 10. Com base nos hiperparâmetros C e ε, espera-se que este modelo
esteja menos regularizado do que os demais apresentados. Entretanto, ao observar as medidas
de desempenho para este modelo, contata-se que não houve sobreajuste significativo nos dados
treino.

Figura 4.11 – Tc prevista versus Tc observada para o modelo SVM RBF, com R2 de 0,87 e
RMSE de 12,35 K

Fonte: o autor

O R2 e o RMSE para os dados de treino foram respectivamente, 0,88 e 11,81 K. Para os
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dados de teste, o R2 ficou em 0,87 e o RMSE em 12,35 K. A Figura 4.11 apresenta o resultado
de Tc prevista versus Tc observada.

É possível ver na Figura 4.11, que mesmo melhorando bastante as medidas de desem-
penho R2 e RMSE, o problema da temperatura ser estimada abaixo de zero Kelvin não foi
contornado. Por apresentar bons resultados para R2 e RMSE, é apresentada na Figura 4.12
uma análise sobre a predição de temperaturas críticas em diferentes faixas de temperaturas. A
análise destaca nas faixas de temperaturas, as amostras do conjunto de teste que tiveram desvio
(|Tcprevista− Tcreal| /Tcreal) menor que 10% no processo de predição.

Figura 4.12 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição da temperatura
crítica pelo Kernel RBF

Fonte: o autor

A partir da Figura 4.12 fica evidenciado que o modelo obtém seu pior resultado para as
temperaturas críticas entre 0 e 10 K. Nessa faixa de temperatura está a maior parte das amostras
do conjunto de teste e apenas 5,6% delas obtiveram desvios inferiores a 10%. Nessa perspectiva,
o modelo descreve melhor as temperaturas que estão entre 130 e 140 K. Para esta última faixa de
temperatura, o modelo previu 78,6% das temperaturas críticas com desvio menor que 10%.

4.5 Árvore de Decisão

Para o modelo Árvore de Decisão os melhores hiperparâmetros foram: profundidade
máxima da árvore igual a 67; mínimo de 13 amostras para que um nó possa se dividir; mínimo
de 6 amostras que um nó da folha deve possuir.



Capítulo 4. Resultados 52

Com os hiperparâmetros apresentados, o modelo obteve para o conjunto de treino um R2

de 0,96 e um RMSE de 7,15 K. Para o conjunto de teste, o R2 ficou em 0,90 e o RMSE em
11,04 K. A Figura 4.13 apresenta o gráfico de Tc prevista versus Tc observada.

Figura 4.13 – Tc prevista versus Tc observada para o modelo Árvore de Decisão, com R2 de
0,90 e RMSE de 11,04 K

Fonte: o autor

Observa-se que a árvore de decisão conseguiu aproximar as predições à Curva Ideal. Além
disso, este modelo de ML conseguiu eliminar o problema das temperaturas críticas negativas.
Ademais, o modelo Árvore de Decisão apresentou um ganho significativo nas medidas de
desempenho, em relação aos modelos apresentados até o momento.

O modelo Árvore de Decisão descreveu significantemente bem os dados de treino, como
pode ser visto nas estimativas de R2 e RMSE. Apesar disso, o modelo conseguiu atingir
resultados satisfatórios com os dados de teste, dados nunca vistos por ele. Assim, pode-se
concluir que o modelo generalizou bem o problema apresentado.

Assim como apresentado na Figura 4.12 para o Kernel RBF, a Figura 4.14 apresenta
uma análise sobre a predição de Tc pelo modelo Árvore de Decisão, em diferentes faixas de
temperaturas.
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Figura 4.14 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição de temperatura
crítica pelo modelo Árvore de Decisão

Fonte: o autor

Como pode ser observado na Figura 4.14, a predição na faixa de temperatura de 0 a
10 K melhorou em relação à ilustrada na Figura 4.12. Nesta faixa, o modelo conseguiu prever
26,4% das temperaturas críticas com um desvio menor que 10%. Usando este desvio de 10%
como parâmetro, o modelo melhor prediz temperaturas na faixa de 100 a 110 K e pior prediz
temperaturas na faixa de 40 a 50 K.

Deve-se salientar, que a análise de desvio de 10% na predição de Tc em diferentes faixas
de temperatura é referente aos dados de teste e que o espaço amostral empregado aqui, possui o
intuito de comparação entre os modelos adotados nesta monografia.

Omodelo Árvore de Decisão, bem comomodelos que o utilizam, permite calcular o ganho
de informação que cada característica possui. Assim, cada característica usada no treinamento
recebe uma pontuação, que representa o quanto ela é importante na obtenção dos resultados. A
Figura 4.15 mostra as cinco características que obtiveram maior ganho de informação. O cálculo
de ganho de informação por cada característica foi obtido pelo atributo feature_importances_
das classes dos modelos.

As duas características estatísticas que mais contribuíram para o ganho de informação
estão relacionadas à condutividade térmica, como mostrado na Figura 4.15. Apesar da Figura 4.15
apresentar somente as cinco principais características, o modelo calcula o ganho de informação
para as 81 características envolvidas.
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Figura 4.15 – Características que mais contribuem com o ganho de informação nomodelo Árvore
de Decisão

Fonte: o autor

Ordenando as características em ordem decrescente de ganho de informação, é possível
plotar a evolução das métricas R2 e RMSE perante o número de características usadas para
treinar o modelo. A Figura 4.16 apresenta no eixo vertical direito valores para R2 e no eixo
vertical esquerdo valores paraRMSE, perante o número de características utilizados para treinar
o modelo. Os valores plotados na Figura 4.16 são referentes aos dados do conjunto de teste.

A Figura 4.16 mostra que as melhores características - as que obtiveram maiores pontua-
ções no ganho de informação - contribuíram mais para os resultados de R2 e RMSE. Assim,
utilizar as principais características ou todas as 81 características, conduz a resultados similares
em relação ao R2 e RMSE.

Como o modelo apresentou uma maior coerência perante o problema proposto, ele foi
utilizado para predizer algumas temperaturas críticas, que aparecem em artigos publicados pelo
Departamento de Engenharia de Materiais, da Escola de Engenharia de Lorena (EEL - USP).
Para esta tarefa, os seguintes supercondutores foram utilizados: Ti2GeC; HfV2Ga4; NiTe2;
Ti2InC; Nb2SnC; Zr0.96V0.04B2; Nb5Ge3; Zr5Pt3C0.3.

O Ti2GeC apresentou supercondutividade a 9,5 K por Bortolozo et al. (2012a). Segundo
Ferreira et al. (2018),HfV2Ga4 apresenta comportamento supercondutor a 4,1 K. A Tc de 4,0 K
para o NiTe2 aparece em Lima et al. (2018), quando dopado com Ti. Bortolozo et al. (2007)
apresenta a temperatura crítica do Ti2InC em 3,1 K. Para o Nb2SnC, Bortolozo et al. (2006)
indica uma Tc de 7,8 K. Renosto et al. (2013) apresenta uma temperatura crítica de 8,7 K para
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Figura 4.16 – Evolução de R2 e RMSE diante do número de características utilizadas para
treinar o modelo Árvore de Decisão

Fonte: o autor

o Zr0.96V0.04B2. Para o Nb5Ge3, a temperatura crítica é 15,3 K de acordo com Bortolozo et al.
(2012b). Por fim, Renosto et al. (2018) apresenta uma Tc de 7 K para o Zr5Pt3C0.3.

Tabela 4.2 – Comparação das temperaturas críticas estimadas pelo modelo Árvore de Decisão
com as encontradas na literatura

Supercondutor Tc Estimada Tc Literatura
Ti2GeC (BORTOLOZO et al., 2012a) 13,2 K 9,5 K
HfV2Ga4 (FERREIRA et al., 2018) 10,8 K 4,1 K
Ti−NiTe2 (LIMA et al., 2018) 1,7 K 4,0 K

Ti2InC (BORTOLOZO et al., 2007) 3,0 K 3,1 K
Nb2SnC (BORTOLOZO et al., 2006) 6,3 K 7,8 K
Zr0.96V0.04B2 (RENOSTO et al., 2013) 8,2 K 8,7 K
Nb5Ge3 (BORTOLOZO et al., 2012b) 2,3 K 15,3K
Zr5Pt3C0.3 (RENOSTO et al., 2018) 7,0 K 7,0 K

Fonte: o autor

A Tabela 4.2 apresenta os valores das temperaturas críticas estimadas pelo modelo e as
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temperaturas críticas encontradas nos artigos citados acima. Analisando a tabela, é possível ver
que omodelo pode predizer bem as temperaturas críticas do Ti2InC,Zr0.96V0.04B2 eZr5Pt3C0.3.
As temperaturas críticas estimadas para esses supercondutores tiveram um desvio menor que 10%,
em comparação às temperaturas críticas encontrada na literatura. Para os demais supercondutores,
o modelo não pode predizer Tc de maneira satisfatória.

4.6 Floresta Aleatória

Com relação aos melhores hiperparâmetros, o modelo Floresta Aleatória apresentou 800
árvores de decisão com profundidade máxima de 20. Perante às árvores, elas deveriam possuir
ao menos 3 amostras para dividir um novo nó e no mínimo 6 amostras para formar uma folha.

Este modelo apresentou R2 e RMSE de 0,97 e 5,53 K, respectivamente, para o conjunto
de treino. No conjunto de teste, o R2 ficou em 0,93 e o RMSE em 8,97 K. Com relação ao
modelo Árvore de Decisão, que havia apresentado o melhor resultado até o momento, a Floresta
Aleatória apresentou aumento do R2 e diminuição do RMSE. A Figura 4.17 apresenta o gráfico
de Tc prevista versus Tc observada.

Figura 4.17 – Tc prevista versus Tc observada para o modelo Floresta Aleatória, com R2 de 0,93
e RMSE de 8,97 K

Fonte: o autor
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Assim comomostrado na Figura 4.13, a Figura 4.17 revela que omodelo Floresta Aleatória
também contornou o então problema de predição em baixas temperaturas. Além disso, a Figura
4.17 mostra uma concentração maior de amostras próximas a Curval Ideal.

A Figura 4.18 mostra uma análise sobre a predição de Tc em diferentes faixas de tempe-
raturas para este modelo. A análise é elaborada com o mesmo intuito da apresentada pela Figura
4.14.

Figura 4.18 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição de temperatura
crítica pelo modelo Floresta Aleatória

Fonte: o autor

Em comparação à análise feita para o modelo Árvore de Decisão, a Figura 4.18 mostra
uma melhoria geral (aumento) nos percentuais, como é ilustrado no gráfico à direita. O aumento
significa que o modelo conseguiu prever um maior número de amostras com um desvio menor
que 10%.

Além disso, pode-se destacar que o modelo conseguiu predizer 83,9% das temperaturas
na faixa de 120 a 130 K, com desvio menor que 10% dos valores medidos em laboratório. Por
mais que apenas 32,2% das amostras na faixa de 40 a 50 K tenham desvios menores que 10%,
houve uma melhora significativa (aumento de 13,1%) em relação ao modelo Árvore de Decisão.

Como o modelo Floresta Aleatória é constituído de várias árvores de decisão, é possível
determinar o ganho de informação para cada característica usada no treinamento. A Figura 4.19
mostra as características de maior relevância, usadas pelo modelo para descrever a temperatura
crítica.
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Figura 4.19 – Características que mais contribuem com o ganho de informação no modelo
Floresta Aleatória

Fonte: o autor

Assim como na Figura 4.15, a Figura 4.19 mostra que as duas características com maiores
ganhos de informação estão relacionadas à condutividade térmica. Nos mesmos moldes da
Seção 4.5, as características foram ordenadas de maneira decrescente em relação ao ganho de
informação. Desse modo, a Figura 4.20 mostra a relação de R2 e RMSE com a utilização
gradativa de características mais importantes.

A Figura 4.20 também apresentou que a utilização de poucas características mais rele-
vantes, conduz a resultados similares a utilização de todas as 81 características. Além disso, em
comparação à Figura 4.16, a Figura 4.20 apresentou uma evolução menos ruidosa nas curvas
de R2 e RMSE. A presença de menos ruídos representa uma maior consistência nas predições,
que se baseiam nas características mais importantes.

Como este modelo também se mostrou consistente perante o problema, e apresentou
melhoria nas medidas de desempenhoR2 eRMSE, ele foi utilizado para predizer as temperaturas
críticas dos supercondutores pesquisados no Departamento de Engenharia de Materiais (EEL -
USP). Os supercondutores, suas temperaturas críticas observadas e suas temperaturas críticas
estimadas pelo modelo em questão, estão representados na Tabela 4.3, assim como na Seção 4.5.

O modelo pode prever a temperatura crítica do Ti2GeC, Zr0.96V0.04B2, Ti − NiTe2

e Zr5Pt3C0.3 com desvios menores que 10%, em relação à temperatura crítica encontrada na
literatura em questão. Apesar do modelo ter melhorado seu resultado na faixa de temperatura
de 0 a 10 K, como mostra a Figura 4.18, as predições dos supercondutores na Tabela 4.3 não
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melhoraram significantemente.

Figura 4.20 – Evolução de R2 e RMSE diante do número de características utilizadas para
treinar o modelo Floresta Aleatória

Fonte: o autor

Tabela 4.3 – Comparação das temperaturas críticas estimadas pelo modelo de Floresta Aleatória
com as encontradas na literatura

Supercondutor Tc Estimada Tc Literatura
Ti2GeC (BORTOLOZO et al., 2012a) 9,4 K 9,5 K
HfV2Ga4 (FERREIRA et al., 2018) 7,3 K 4,1 K
Ti−NiTe2 (LIMA et al., 2018) 4,4 K 4,0 K

Ti2InC (BORTOLOZO et al., 2007) 4,8 K 3,1 K
Nb2SnC (BORTOLOZO et al., 2006) 6,5 K 7,8 K
Zr0.96V0.04B2 (RENOSTO et al., 2013) 7,8 K 8,7 K
Nb5Ge3 (BORTOLOZO et al., 2012b) 2,0 K 15,3 K
Zr5Pt3C0.3 (RENOSTO et al., 2018) 6,4 K 7,0 K

Fonte: o autor
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4.7 Árvores Extremamente Aleatórias

Para este modelo, foram utilizadas 475 árvores de decisão. Cada árvore possuía profundi-
dade máxima de 20, requeria no mínimo 2 amostras de dados em uma folha e exigia no mínimo
4 amostras para dividir um novo nó.

Sobre o conjunto de treino, o modelo alcançou um R2 de 0,98 e um RMSE de 4,90
K. No conjunto de teste, o R2 foi de 0,94 e o RMSE de 8,72 K. Como pode ser percebido,
os valores das medidas de desempenho para o modelo de Árvores Extremamente Aleatórias
apresentaram o melhor resultado, até o presente momento.

A Figura 4.21 apresenta o gráfico de Tc prevista versus Tc observada para o modelo de
Árvores Extremamente Aleatórias.

Figura 4.21 – Tc prevista versus Tc observada para o modelo Árvores Extremamente Aleatórias,
com R2 de 0,94 e RMSE de 8,72 K

Fonte: o autor

Ao comparar a Figura 4.17 com a Figura 4.21, é evidente que ambas possuem grande
semelhança. Isto se deve ao fato destes métodos serem arquitetados de maneira semelhante. A
diferença entre eles é que o modelo Árvores Extremamente Aleatórias tende a gerar suas árvores
de modo ainda mais aleatório. Assim, esse modelo tente a construir árvores mais diversificadas
em relação ao modelo Floresta Aleatória. Além das semelhanças entre a Figura 4.17 e a Figura



Capítulo 4. Resultados 61

4.21, os ganhos perante R2 e RMSE não são muito expressivos entre esses dois modelos.

Com base no que foi apresentado no parágrafo anterior, a Figura 4.22 ajuda elucidar a
diferença entre o modelo Árvores Extremamente Aleatórias e o Floresta Aleatória. Como pode
ser visto nela, o modelo atual consegue atribuir mais relevância a outras características. Nessa
perspectiva, a pontuação sobre o ganho de informação é melhor distribuída entre as características.

Figura 4.22 – Características que mais contribuem com o ganho de informação no modelo
Árvores Extremamente Aleatórias

Fonte: o autor

A partir da Figura 4.22 é possível perceber que as três características que mais contribuem
com o ganho de informação no modelo, estão relacionadas à condutividade térmica. Além disso,
todas as características que aparecem na Figura 4.22 apresentaram os maiores coeficientes de
correlação Pearson (Equação 3.4), como pode ser visto na Figura 4.4.

A Figura 4.23 apresenta o gráfico da evolução de R2 e RMSE em relação ao número de
características, ordenadas de forma decrescente em relação ao ganho de informação. A Figura 4.23
também mostra a convergência rápida para os valores de R2 e RMSE. Entretanto, ao comparar
a Figura 4.23 com a Figura 4.20, é possível perceber que o modelo Árvores Extremamente
Aleatórias converge de maneira menos abrupta, do que o modelo Floresta Aleatória.

Na Figura 4.24 está representada uma análise sobre a predição de temperatura crítica em
diferentes faixas de temperaturas. Em todas as faixas de temperaturas, exceto na faixa entre 40 e
50 K, o modelo Árvores Extremamente Aleatórias apresentou um maior percentual de amostras
com desvio de predição menor que 10%. Na faixa entre 40 e 50 K, o modelo Floresta Aleatória
conseguiu predizer 0,5% a mais de amostras com desvio menor que 10%. Além disso, o modelo
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Árvores Extremamente Aleatórias conseguiu predizer 90,3% das amostras com desvio menor
que 10%, na faixa de 120 a 130 K.

Figura 4.23 – Evolução de R2 e RMSE diante do número de características utilizadas para
treinar o modelo Árvores Extremamente Aleatórias

Fonte: o autor

A Tabela 4.4 mostra os resultados de predição de Tc para os supercondutores introduzidos
na Seção 4.5. Ao analisar a tabela, é possível identificar que o modelo conseguiu predizer a Tc do
Ti2GeC e do Zr0.96V0.04B2 com desvio menor que 10%. Apesar do modelo apresentar melhores
resultados para o R2 e o RMSE, ele não melhorou significantemente a predição de Tc para os
supercondutores apresentados na Tabela 4.4.
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Figura 4.24 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição de temperatura
crítica pelo modelo Árvores Extremamente Aleatórias

Fonte: o autor

Tabela 4.4 – Comparação das temperaturas críticas estimadas pelo modelo de Árvores Extrema-
mente Aleatórias com as encontradas na literatura

Supercondutor Tc Estimada Tc Literatura
Ti2GeC (BORTOLOZO et al., 2012a) 7,7 K 9,5 K
HfV2Ga4 (FERREIRA et al., 2018) 6,9 K 4,1 K
Ti−NiTe2 (LIMA et al., 2018) 7,7 K 4,0 K

Ti2InC (BORTOLOZO et al., 2007) 3,9 K 3,1 K
Nb2SnC (BORTOLOZO et al., 2006) 6,0 K 7,8 K
Zr0.96V0.04B2 (RENOSTO et al., 2013) 7,9 K 8,7 K
Nb5Ge3 (BORTOLOZO et al., 2012b) 1,4 K 15,3 K
Zr5Pt3C0.3 (RENOSTO et al., 2018) 5,8 K 7,0 K

Fonte: o autor

4.8 Gradient Boosting

Para o modelo Gradient Boosting os melhores hiperparâmetros foram: 150 árvores de
decisão; profundidade das árvores igual a 10; mínimo de 6 amostras em cada folha; mínimo de 5
amostras para um nó se dividir; taxa de aprendizado de 0,1.

Com relação aos modelos anteriores, que envolviam a construção de árvores de decisão,
o modelo Gradient Boosting se mostrou mais regularizado. Este modelo utilizou menos árvores
para descrever o problema de regressão proposto. Além disso, as árvores envolvidas tiveram
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profundida reduzida e exigiram mais das amostras para seu desenvolvimento, em relação aos
modelos Árvores Extremamente Aleatórias e Floresta Aleatória.

Para o conjunto de treino, o modelo Gradient Boosting atingiu um R2 de 0,98 e um
RMSE de 5,02 K. Perante os dados de treino, o modelo alcançou um R2 de 0,93 e um RMSE

de 8,97 K. Em relação ao modelo Árvores Extremamente Aleatórias, o qual apresentou melhores
R2 e RMSE até o momento, o modelo Gradient Boosting apresentou resultados inferiores.
Entretanto, por mais que os resultados sejam inferiores ao modelo Árvores Extremamente
Aleatórias, as diferenças nas medidas de desempenho não foram significativas.

A Figura 4.25 mostra o gráfico de Tc prevista versus Tc observada para o modelo Gradient
Boosting. Ao observar a Figura 4.7, é possível encontrar semelhanças entre ela e as Figuras 4.17
e 4.21. Assim, pode-se mencionar que o modelo Gradient Boosting aproxima suas predições à
Curva Ideal de forma correlata aos modelos Árvores Extremamente Aleatória e Floresta Aleatória.

Figura 4.25 – Tc prevista versus Tc observada para o modelo Gradient Boosting, com R2 de 0,93
e RMSE de 8,97 K

Fonte: o autor

A Figura 4.26 apresenta a análise sobre a predição de temperatura crítica em diferentes
faixas de temperaturas, empregada neste trabalho. Com relação aos modelos que empregam
árvores de decisão, a análise da Figura 4.26 permite afirmar que o modelo alcançou a pior predição
para as temperaturas entre 0 e 10 K.
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Comparando com osmodelos anteriores, o modelo Gradient Boosting obteve resultados de
predição semelhantes ao modelo Floresta Aleatória. Entretanto, o modelo Árvores Extremamente
Aleatória apresentou ummelhor desempenho em todas as faixas de temperaturas. Por fim, pode-se
destacar para o modelo Gradient Boosting a predição de 87,1% das temperaturas críticas na faixa
de 120 a 130 K, com desvio menor que 10% em relação às temperaturas observadas.

Figura 4.26 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição de temperatura
crítica pelo modelo Gradient Boosting

Fonte: o autor

As melhores características, perante o ganho de informação no presente modelo, estão
representadas na Figura 4.27. As duas características de maior ganho de informação estão
relacionadas à condutividade térmica do supercondutor. Ao analisar a Figura 4.27, é possível
perceber que as características mais importantes deste modelo estão presentes em outros, que
também se basearam nas árvores de decisão.

Assim como para os outros modelos de árvores de decisão, a evolução das métricas R2 e
RMSE em decorrência da utilização das características mais importantes está mostrada na Figura
4.28. Pode-se perceber que o gráfico elucidado na Figura 4.28 para o modelo Gradient Boosting,
se assemelha muito ao gráfico para o modelo Árvores Extremamente Aleatórias (Figura 4.23).
Este fato permite dizer que ambos modelos se apoiam de modo semelhante em suas principais
características, para predizer a Tc dos supercondutores.

A Tabela 4.5 compara os valores das predições do modelo com os valores encontrados na
literatura, para as temperaturas críticas dos supercondutores estudados na EEL-USP. Seguindo a
linha de discussão das seções anteriores deste capítulo, pode-se afirmar que o presente modelo
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pode predizer somente a temperatura crítica do supercondutorZr5Pt3C0.3, com um desvio menor
que 10%.

Figura 4.27 – Características que mais contribuem com o ganho de informação no modelo
Gradient Boosting

Fonte: o autor

Tabela 4.5 – Comparação das temperaturas críticas estimadas pelo modelo Gradient Boosting
com as encontradas na literatura

Supercondutor Tc Estimada Tc Literatura
Ti2GeC (BORTOLOZO et al., 2012a) 13,2 K 9,5 K
HfV2Ga4 (FERREIRA et al., 2018) 6,6 K 4,1 K
Ti−NiTe2 (LIMA et al., 2018) 4,5 K 4,0 K

Ti2InC (BORTOLOZO et al., 2007) 5,4 K 3,1 K
Nb2SnC (BORTOLOZO et al., 2006) 6,6 K 7,8 K
Zr0.96V0.04B2 (RENOSTO et al., 2013) 6,7 K 8,7 K
Nb5Ge3 (BORTOLOZO et al., 2012b) 3,8 K 15,3 K
Zr5Pt3C0.3 (RENOSTO et al., 2018) 6,8 K 7,0 K

Fonte: o autor
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Figura 4.28 – Evolução de R2 e RMSE diante do número de características utilizadas para
treinar o modelo Gradient Boosting

Fonte: o autor

4.9 Rede Neural Profunda

Para a Rede Neural Profunda, encontraram-se melhores valores paraR2 eRMSE quando
o sistema consistia em 3 camadas ocultas. Nas camadas ocultas, a primeira possuía 61 neurônios,
a segunda 41 neurônios e a terceira 21 neurônios. Além disso, determinou-se que 32 amostras
passariam pela rede, em cada reajuste dos pesos feito pelo otimizador.

O número de vezes em que todos os dados passam pela rede é denominado época
(GOOGLE BRAIN TEAM, 2020). O valor da época foi determinado através de uma função de
parada antecipada. Assim, este hiperparâmetro foi definido a partir do ponto em que o modelo
para de ser melhorado significativamente, perante a redução doMSE. A Figura 4.29 apresenta a
evolução doMSE a partir do número de épocas.

A partir da análise gráfica e de um atributo da biblioteca TensorFlow, o número de épocas
foi definido em 153. O gráfico da Figura 4.29 apresenta a minimização doMSE com os dados do
conjunto de treino. 20% deste conjunto foi usado para validar a minimização doMSE durante o
treinamento da rede. A curva contínua na Figura 4.29 representa a redução doMSE, perante os
dados que estão continuamente melhorando a predição do modelo. A curva tracejada na Figura
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4.29, apresenta o desempenho da redução doMSE pelos 20% dos dados de treino - dados que
não foram usados no treinamento. A partir da curva tracejada é que se defini o número de épocas.

Figura 4.29 – Evolução doMSE diante do número de épocas

Fonte: o autor

A partir do treinamento da rede com os hiperparâmetros acima, pode-se obter um R2 de
0,92 e um RMSE de 9,83 K, para os dados de treino. Nos dados de teste, o R2 se consolidou
em 0,90 e o RMSE em 11,19 K. A Figura 4.30 apresenta o gráfico de Tc prevista versus Tc
observada para a Rede Neural Profunda.

Por mais que o modelo tenha atingido bons resultados paraR2 eRMSE, em comparação
aos apresentados neste capítulo, ele não foi o melhor. Além disso, o modelo de Rede Neural
Profunda trouxe novamente o problema de predição em baixas temperaturas. Na Figura 4.30, por
mais que o modelo distribua bem as temperaturas ao redor da Curva Ideal, é possível ver que ele
prediz algumas temperaturas com valores abaixo de 0 K, configurando uma incoerência física.

Considerando os bons valores deR2 eRMSE, foi elaborada uma análise das predições de
Tc em diferentes faixas de temperaturas, nos mesmos moldes dos modelos anteriores apresentados
neste capítulo. A Figura 4.31 apresenta a análise feita para a Rede Neural Profunda, com base
nas predições de Tc com desvios menores que 10%.
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Figura 4.30 – Tc prevista versus Tc observada para a Rede Neural Profunda, com R2 de 0,90 e
RMSE de 11,19 K

Fonte: o autor

A Figura 4.31 revela que na Rede Neural Profunda, os percentuais de predição de Tc
com desvio menor que 10% foram bem inferiores aos apresentados por outros modelos, que se
basearam em árvores de decisão. Apesar disso, a Rede Neural Profunda conseguiu prever 78,6%
das temperaturas críticas na faixa de 130 a 140 K, com desvio menor que 10% do valor medido
em laboratório.

A Tabela 4.6 apresenta os valores da predição de Tc feita pelo modelo Rede Neural
Profunda, para os supercondutores apresentados na Seção 4.5. O modelo conseguiu predizer bem
as temperaturas críticas dos supercondutores NiTe2 e Zr0.96V0.04B2, desviando a predição de
ambos em 0,1 K.
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Figura 4.31 – O gráfico à esquerda mostra a quantidade de amostras no conjunto de teste. O
gráfico à direita apresenta o percentual e o número de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predição de temperatura
crítica pela Rede Neural Profunda

Fonte: o autor

Tabela 4.6 – Comparação das temperaturas críticas estimadas pelo modelo Rede Neural Profunda
com as encontradas na literatura

Supercondutor Tc Estimada Tc Literatura
Ti2GeC (BORTOLOZO et al., 2012a) 15,2 K 9,5 K
HfV2Ga4 (FERREIRA et al., 2018) 9,3 K 4,1 K
Ti−NiTe2 (LIMA et al., 2018) 9,3 K 4,0 K

Ti2InC (BORTOLOZO et al., 2007) 2,3 K 3,1 K
Nb2SnC (BORTOLOZO et al., 2006) 5,0 K 7,8 K
Zr0.96V0.04B2 (RENOSTO et al., 2013) 8,8 K 8,7 K
Nb5Ge3 (BORTOLOZO et al., 2012b) 7,2 K 15,3 K
Zr5Pt3C0.3 (RENOSTO et al., 2018) 4,8 K 7,0 K

Fonte: o autor

4.10 Discussão geral dos resultados

Com base nos resultados apresentados, o modelo Árvores Extremamente Aleatórias
mostrou-se como o melhor. Além dos melhores valores para as medidas de desempenho R2 e
RMSE, o modelo Árvores Extremamente Aleatórias obteve os melhores resultados de predições
em diferentes faixas de temperaturas, como pode ser observado na Figura 4.24.

Com base no parágrafo anterior, pode-se afirmar que este trabalho conseguiu melhor
descrever o problema proposto, com um R2 igual a 0,94 e RMSE igual a 8,72 K, para os dados
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de teste. Perante o trabalho de Hamidieh (2018), o mais parecido com esta monografia, o R2 e o
RMSE obtidos para o mesmo problema foram de 0,92 e 9,5 K, respectivamente.

Hamidieh (2018) resolveu a mesma problemática apresentada neste trabalho, utilizando a
mesma base de dados, porém com um número menor de amostras de supercondutores. Hamidieh
(2018) utilizou o modelo Gradient Boosting, com os seguintes hiperparâmetros: 374 árvores
de decisão; profundidade das árvores igual a 16; mínimo de 1 amostra em cada folha; taxa de
aprendizado de 0,02.

Em comparação com os resultados do Gradient Boosting desta monografia (R2 = 0, 93

e RMSE = 8, 97 K), é possível observar que ambos trabalhos atingiram resultados similares.
Entretanto, os resultados apresentados na Seção 4.8 mostra um modelo Gradient Boosting mais
regularizado para esta monografia.

O modelo Gradient Boosting deste trabalho utilizou menos árvores de decisão, com
profundidade de árvores menores e com mais restrições para o crescimento das árvores. A
explicação para este fato, é a utilização da metodologia empregada na Capítulo 3, que deriva da
estruturação teórica proveniente de Scikit-learn (2020e) e Géron (2019).

A Figura 4.32 mostra o resultado do gráfico de Tc prevista versus Tc observada para o
trabalho de Hamidieh (2018). Para discutir a eficiência dos resultados na Figura 4.32, Hamidieh
(2018) usou o modelo de Regressão Linear Múltiplica. Os resultados da Regressão Linear
Múltiplica, apresentados em Hamidieh (2018), são idênticos aos elucidados neste trabalho na
Seção 4.2.

Além de Hamidieh (2018), outros autores produziram trabalhos visando contornar o
problema de predição da temperatura crítica de supercondutores, usando modelos de ML. Le et
al. (2020), por exemplo, focou em explorar a capacidade da predição de Tc em altas temperaturas.
Em seu trabalho, ele conseguiu atingir um R2 de 0,94 e um RMSE de 3,83 K, através de uma
Rede Neural baseada no teorema de Bayes.

Além do resultado de Le et al. (2020), Stanev et al. (2018) revela um R2 de 0,85 para a
predição da Tc de supercondutores de altas temperaturas, usando ummodelo de Floresta Aleatória.
Também, Owolabi, Akande e Olatunji (2016) treinam um modelo de ML usando Máquinas de
Vetores de Suporte, para predizer Tc de supercondutores YBCO. Para este último, um resultado
de R2 igual a 0,96 é alcançado.

Durante o desenvolvimento desta monografia, outros trabalhos foram publicados com a
mesma temática. Roter e Dordevic (2020) publicaram na revista Physica C: Superconductivity
and its Applications, um artigo sobre a predição de Tc usando um modelo com várias árvores
de decisão. No trabalho de Roter e Dordevic (2020), a mesma base de dados explorada nesta
monografia foi empregada. Assim, Roter e Dordevic (2020) conseguiram atingir um R2 de 0,93
e um RMSE de 8,91 K. A Figura 4.33 mostra o gráfico de Tc prevista versus Tc observada para
o trabalho de Roter e Dordevic (2020).
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Figura 4.32 – Tc prevista versus Tc observada para o Gradient Boosting, com R2 de 0,92 e
RMSE de 9,5 K, segundo trabalho de Hamidieh (2018)

Fonte: Hamidieh (2018)

Perante os trabalhos de outros autores, pode-se afirmar que os modelos desenvolvidos
nesta monografia atingiram bons resultados. Para o modelo de Floresta Aleatória, por exemplo,
este trabalho alcançou um R2 de 0,93. Para um mesmo modelo de Floresta Aleatória, limitado a
altos valores de Tc, Stanev et al. (2018) atingiu um R2 de 0,84.

Por mais que neste trabalho os modelos de SVM tenham sido pouco explorados, por não
estimarem bem as baixas temperaturas, Owolabi, Akande e Olatunji (2016) apresentaram um R2

de 0,96 para supercondutores YBCO, usando um modelo de SVM.

Destacou-se também o RMSE de 3,83 K apresentado no trabalho de Le et al. (2020).
Apesar do erro ser extremamente significativo perantes os apresentados neste trabalho, Le et al.
(2020) também direciona suas análises à temperaturas críticas altas. Deve-se salientar, que nesta
monografia a Tc foi explorada sem distinção de faixas de temperaturas.

Contudo, os resultados de Roter e Dordevic (2020) ficaram os mais próximos aos dis-
cutidos nesta monografia, para o modelo de Árvores Extremamente Aleatórias. Aliás, pode-se
encontrar semelhanças entre as Figuras 4.21 e 4.33, que representam os resultados das predições
desses modelos.

Na literatura, não foi possível encontrar resultados que apresentassem os mesmos hi-
perparâmetros atingidos nesta monografia. Além disso, não foi encontrado nenhum trabalho
que explorasse a aplicação do modelo Árvores Extremamente Aleatórias para predizer a Tc de
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supercondutores.

Figura 4.33 – Tc prevista versus Tc observada, com R2 de 0,93 e RMSE de 8,91 K segundo
trabalho de Roter e Dordevic (2020)

Fonte: Roter e Dordevic (2020)
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5 Considerações Finais

5.1 Conclusão

Pode-se concluir que o presente trabalho conseguiu melhor predizer a temperatura crítica
dos supercondutores a umR2 de 0,94 e a um erro de±8, 72K. Estes resultados são provenientes do
modelo Árvores Extremamente Aleatórias, que se mostrou o melhor modelo dentre os avaliados.
Além de obter os melhores valores para R2 e RMSE, este modelo se mostrou mais preciso nas
predições de supercondutores em diferentes faixas de temperatura como pode ser visto na Figura
4.24. Como um diferencial para este modelo, pode-se destacar que ele conseguiu utilizar melhor
as características calculadas na Seção 3.2 para predizer Tc, como pode ser mostrado na Figura
4.23.

Outra conclusão importante para este trabalho, é fato dos modelos que usaram árvores
de decisão para realizar predições terem conseguido melhor generalizar o problema proposto.
Como pode ser visto nos resultados mostrados no Capítulo 4, os modelos que usaram árvores de
decisão, além de obterem os melhores resultados para R2 e RMSE, conseguiram de maneira
generalizada aproximar suas predições aos valores observados em laboratório. Este resultado é
reafirmado pelas análises de predições em diferentes faixas de temperatura e pelos gráficos de Tc
prevista versus Tc observada.

Comparando esta monografia com outros trabalhos, como foi feito na Seção 4.10, é pos-
sível concluir que os resultados dos melhores modelos apresentados no Capítulo 4 são próximos
aos apresentados por Roter e Dordevic (2020) e Hamidieh (2018). Comparado com o trabalho
de Hamidieh (2018), o qual possui a mesma estrutura de base de dados, este trabalho aumentou
o R2 em 0,02 e diminuiu o RMSE em 0,8 K ao utilizar o modelo de Árvores Extremamente
Aleatórias, ao invés do modelo Gradient Boosting. Além disso, ao comparar o modelo Gradient
Boosting desenvolvido nesta monografia, com o mesmo modelo usado por Hamidieh (2018),
é possível perceber que neste trabalho o modelo em questão encontra-se mais regularizado. O
resultado de uma melhor regularização pode ser atribuído ao processo de validação cruzada nos
moldes da Seção 3.4.

Na tentativa de predizer a Tc dos supercondutores abordados em artigos do Departamento
de Engenharia de Materias da EEL-USP, pode-se concluir que nenhum modelo conseguiu prever
bem os resultados dos supercondutores em questão. Um motivo possível para estas predições
não serem próximas ao esperado para estes supercondutores, é a não representatividade das
características levantas na Seção 3.2. Apesar disso, um R2 de 0,94 conduz a relevância da busca
por características mais representativas para a problemática apresentada, ou até mesmo novas
abordagens de aprendizado de máquina.
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Por fim, por mais que a IA tenha sido teorizada a muito tempo, como pode ser visto na
Seção 2.2.6, ela vem sendo utilizada cada vez mais por conta da capacidade de processamento
dos computadores e a disponibilidade de dados. Por esse motivo, é possível observar o aumento
da utilização de modelos de ML associado à descrição de problemas físicos, como o apresentado
aqui e nas publicações referenciadas no corpo desta monografia. Nessa perspectiva, por mais que
a utilização de modelos de ML não substitua a necessidade de descrição teoria de fenômenos
como o da supercondutividade, eles podem ser usados como ferramenta em apoio a resultados
científicos.

5.2 Trabalhos Futuros

Este trabalho usou somente características estatísticas levantadas pela fórmula química de
supercondutores. Desse modo, a exploração de características mais relacionadas à problemática
da supercondutividade poderiam ser incorporadas no treinamento dos modelos de ML, como
pressão, estrutura cristalina e melhor descrição teórica ou numérica para o supercondutor.

Ademais, para trabalhos futuros, diferentes modelos de machine learning poderiam ser
explorados. Além disso, caberia a avaliação do treinamento de modelos restringindo-os a uma
faixa de temperatura crítica, como feito nos trabalhos de Stanev et al. (2018) e Le et al. (2020),
referenciados nesta monografia.

Outra alternativa à sequenciação deste trabalho seria a exploração de outras propriedades
supercondutoras, como campo crítico ou densidade decorrente crítica. Ainda para a supercon-
dutividade, além de implementar problemas de regressão, seria possível avaliar o desempenho
dos modelos de ML em classificar se determinado material apresentaria ou não indícios de
supercondutividade.

Também, uma outra possibilidade de continuação seria a utilização da metodologia
desenvolvida por este trabalho, para avaliar o desempenho de modelos de ML na predição de
outras propriedades físicas, não necessariamente ligadas à supercondutividade.
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