UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE LORENA

MURILO AFONSO ROBIATI BIGOTO

Avaliacdo de modelos de machine learning para predicao da temperatura
critica de supercondutores

Lorena
2020



MURILO AFONSO ROBIATI BIGOTO

Avaliacao de modelos de machine learning para predicao da temperatura

critica de supercondutores

Trabalho de Graduacdo apresentado a Escola de Enge-
nharia de Lorena da Universidade de Sdo Paulo como
requisito parcial para conclusdo da Graduagdo do curso

de Engenharia Fisica.

Orientador: Prof. Dr. Luiz Tadeu Fernandes Eleno

Lorena
2020



AUTORIZO A REPRODUGAO E DIVULGAGAO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO
CONVENCIONAL OU ELETRONICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

Ficha catalografica elaborada pelo Sistema Automatizado
da Escola de Engenharia de Lorena,
com os dados fornecidos pelo(a) autor(a)

Bi goto, Murilo Afonso Robiati

Aval i acdo de nodel os de machi ne | earni ng para
predi cdo da tenperatura critica de supercondutores /
Miril o Afonso Robiati Bigoto; orientador Luiz Tadeu
Fer nandes El eno. - Lorena, 2020.
78 p.

Monogr afi a apresentada conp requi sito parcial
para a conclusao de G aduagdo do Curso de Engenharia
Fisica - Escola de Engenharia de Lorena da
Uni ver si dade de S&o Paul 0. 2020

1. Machine learning. 2. Supercondutividade. 3.
Tenperatura critica. 4. Inteligéncia artificial. I.
Titulo. Il. Eleno, Luiz Tadeu Fernandes, orient.




Dedico este trabalho aos meus pais, que sempre me transmitiram amor e apoio.



Agradecimentos

Agradeco inestimavelmente aos meus pais, Radamez e Sandra, por todos os esfor¢os e
incentivos direcionados a minha formacao académica e profissional. Agradeco também a eles
por propiciarem a minha experiéncia de existir e a formagdo do meu caréter. Sou muito grato a
minha mée por me ensinar o que € o verdadeiro amor e por ser um exemplo de forca e bravura. E

ao meu pai, sou extremamente grato por ser meu exemplo de virtudes e honestidade.

Sem o apoio e incentivo dos meus pais e avos, eu certamente nao teria saido atrds dos
meus sonhos e abandonado a pacata Santana da Ponte Pensa, que com seus mil e quatrocentos
habitantes, vive em tempos arcaicos. Assim, agradeco a toda minha familia, pois sem eles eu ndo

teria forcas para seguir em frente e batalhar pelo que eu acredito.

A minha avé Sebastiana Diniz, sou eternamente grato pela companhia, suporte, demons-
tracdes de amor e amizade. Ela me ensinou o verdadeiro significado de amor ao préximo e
companheirismo. Ao meu avd José Bigoto, tenho uma divida eterna por ter me mostrado que as
coisas simples sdo as mais importantes, que a vida ¢ uma oportunidade tnica, sendo indispensavel

SEr quem realmente somos.

Ao meu avd Alvides Robiati, agradeco grandemente por ter me mostrado que envelhecer
ndo passa de uma perspectiva fisica e que vitalidade € algo intrinseco ao ser que habita uma
carcaca de carne. A minha avé Anita Neves, deixo o agradecimento por me mostrar um amor

puro e belo. E dela que eu tenho o maior exemplo de sensatez, compaixdo e verdade.

Agradeco ao meu pequeno irmao Miguel, por me possibilitar experimentar o sentimento
de ser uma pessoa relevante e me fazer querer que o mundo seja um lugar melhor. Sou muito

grato por ele se mostrar ser uma crianca cética e admirar com muita pureza a natureza.

Nao poderia deixar de agradecer a todos os professores e cientistas comprometidos com
a verdadeira ciéncia, pois eles sdo quase sempre 0s responsdveis por mostrar que a ciéncia é
a ferramenta mais disruptiva para a evolug¢ao da nossa espécie. Além disso, eles sao um dos
principais mediadores do conhecimento cientifico — o agente mais importante no combate ao

fanatismo, extremismo, incoeréncia e ignorancia.

Nessa perspectiva, agradeco ao Prof. Dr. Luiz Tadeu Fernandes Eleno, por ter aceito meu
pedido de orientacdo e ser um profissional admirdvel e compromissado com a transmissao do

conhecimento cientifico.

Agradeco muito aos meus amigos, que mesmo antes do meu ingresso a universidade,
estiveram ao meu lado e me incentivaram a buscar meus sonhos. Neste contexto, agradeco
o companheirismo e as noites regadas a Raul Seixas, que meu grande amigo Jodo Pedro me

proporcionou.



Ao decorrer da minha graduacao, conheci muitas pessoas importantes, que com certeza
marcaram para sempre minha vida. Dentre elas, devo mencionar e agradecer ao meu grande
amigo Carlos A. Cortez Jr., que em todos os momentos da minha trajetéria universitdria esteve
ao meu lado. Ele foi meu amigo, minha dupla para trabalhos e estudos, meu companheiro de

praticamente todas as disciplinas e momentos.

Devo indispensavelmente agradecer 8 minha namorada, por todo amor e afeto transmitido
a mim, durante minha trajetdria universitdria. Ela foi minha companheira constante, a qual sempre
esteve ao meu lado, seja em momentos delicados ou aventureiros. Além disso, é com ela e meu
cachorro Ozzy, que divido de maneira mais leve este inforttinio momento de quarentena, em

decorréncia a Covid-19.



Resumo

O fendmeno da supercondutividade foi descoberto em 1911 por Heike K. Onnes. Desde entdo,
nao foi possivel consolidar um desenvolvimento tedrico capaz de explicar o comportamento
de materiais supercondutores em diferentes faixas de temperatura. Desse modo, descrever pro-
priedades supercondutoras, como a temperatura critica (7.), ainda € um grande desafio. Nessa
perspectiva, usar ferramentas de Inteligéncia Artificial se torna uma alternativa para a predi¢ao
de propriedades dos supercondutores. Assim, este trabalho busca avaliar a capacidade de alguns
modelos de machine learning na predicao de T,. Para treinar os modelos de machine learning,
foram utilizados dados de supercondutores extraidos do banco de dados do Instituto Nacional de
Ciéncia dos Materiais do Japao (NIMS). Assim, a partir da formula quimica dos supercondutores
extraidos, foram calculadas medidas estatisticas relacionadas a massa atdmica, primeira energia
de ionizacdo, raio atobmico, densidade, afinidade eletronica, calor de fusdo, condutividade térmica
e valéncia. Com base nas medidas calculadas e na temperatura critica obtida do NIMS, os mo-
delos de machine learning foram submetidos ao processo de aprendizado supervisionado. Para
melhor adequar estes modelos ao problema proposto, seus hiperparametros foram obtidos pelo
processo de validagdo cruzada. Os modelos de machine learning avaliados nesta monografia sao:
Regressao Linear Multipla; Elastic-Net; Mdquinas de Vetores de Suporte; Arvore de Decisio;
Floresta Aleatéria; Arvores Extremamente Aleatérias; Gradient Boosting; Rede Neural Profunda
(Multicamadas de Perceptrons). Como melhor resultado, o modelo Arvores Extremamente Ale-
atdrias alcangou um R? de 0,94 e um RMSE de 8,69 K para um conjunto de dados de teste,

contendo amostras de supercondutores ndo empregadas no processo de treinamento.

Palavras-chave: Aprendizado de Méaquina. Supercondutividade. Temperatura Critica.



Abstract

The phenomenon of superconductivity was discovered in 1911 by Heike K. Onnes. Since then, it
has not been possible to consolidate a theoretical development capable of explaining the behavior
of superconducting materials in different temperature ranges. Thus, describing superconduct-
ing properties, such as critical temperature (1), is still a major challenge. In this perspective,
using Artificial Intelligence tools becomes an alternative for the prediction of superconducting
properties. Thus, this work seeks to evaluate the capacity of some machine learning models in
the prediction of 7. To train the machine learning models, data from superconductors extracted
from the database of the National Institute of Materials Science in Japan (NIMS) were used.
Thus, from the chemical formula of the superconductors extracted, statistical measures related
to atomic mass, first ionization energy, atomic ray, density, electronic affinity, heat of fusion,
thermal conductivity and valence were calculated. Based on the calculated measures and the
critical temperature obtained from the NIMS, the machine learning models were submitted to the
supervised learning process. To better adapt these models to the proposed problem, their hyperpa-
rameters were obtained by the cross-validation process. The machine learning models evaluated
in this monograph are: Multiple Linear Regression; Elastic-Net; Support Vector Machines, Deci-
sion Tree; Random Forest; Extremely Random Trees; Gradient Boosting; Deep Neural Network
(Perceptrons multilayer). As a best result, the Extremely Random Trees model reached a R? of
0,94 and a RM SE of 8,69 K for a set of test data, containing samples of superconductors not

used in the training process.

Keywords: Machine Learning. Superconductivity. Critical Temperature.
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1 Introducao

A supercondutividade ja foi tema de 5 Prémios Nobel em Fisica e por mais que tenha sido
descoberta hd aproximadamente 109 anos, ainda é uma édrea de estudos atual. De uma maneira
ampla, um material € dito supercondutor quando conduz corrente elétrica a uma resisténcia
praticamente nula, abaixo de determinada temperatura (HAMIDIEH, 2018). Esta temperatura, a

qual abaixo dela o sistema entra no estado supercondutor, ¢ denominada temperatura critica (7).

Segundo Costa e Pavao (2012), a descoberta da supercondutividade foi extremamente
disruptiva, pois contrariou a descri¢cdo das teorias de condutividade vigentes na época. Dessa
forma, por mais que a supercondutividade tenha sido observada primeiramente por Heike K.

Onnes em 1911, ela s6 foi satisfatoriamente teorizada pela teoria BCS, desenvolvida em 1957.

Apesar da teoria BCS ter revolucionado a histéria da supercondutividade, ela nao foi
capaz de explicar os adventos dos supercondutores de altas temperaturas e dos supercondutores
com acoplamentos fortes (BOERI, 2020). Ainda assim, obter um modelo cientifico ou teoria capaz
de predizer satisfatoriamente a temperatura critica dos supercondutores, ainda € um problema
em aberto (HAMIDIEH, 2018).

Nessa perspectiva, este trabalho se propde a avaliar modelos de aprendizado de médquina,
no processo de predi¢ao da temperatura critica de supercondutores, a partir de suas formulas
quimicas. Os dados usados para treinar os modelos foram inspirados na abordagem usada por
Hamidieh (2018). Nesta abordagem, medidas estatisticas de propriedades fisicas foram calculadas
com base na formula quimica dos supercondutores. As férmulas quimicas e as temperaturas
criticas dos supercondutores foram obtidas do Instituto Nacional de Ciéncia dos Materiais do

Japao.

Com o cdlculo das caracteristicas - medidas estatisticas das propriedades fisicas -, os
modelos de aprendizado de mdquina foram submetidos ao treinamento pelo processo de apren-
dizado supervisionado. Além disso, buscando generalizar melhor os modelos, o processo de

validagado cruzada foi explorado para encontrar os melhores hiperparametros em cada caso.

No desenvolvimento da metodologia deste trabalho, os seguintes modelos de aprendizado
de méaquina foram abordados: Regressao Linear Multipla; Elastic-Net; Mdquinas de Vetores de
Suporte; Arvore de Decisio; Floresta Aleatéria; Arvores Extremamente Aleatérias; Gradient
Boosting; Rede Neural Profunda. Estes modelos foram avaliados e comparados através das
métricas R? e RM SE, que sio, respectivamente, o coeficiente de determinagdo e a raiz quadrada

do erro quadratico médio.

Por fim, espera-se com este trabalho avaliar a capacidade dos modelos apresentados acima,

na tarefa de predi¢do da temperatura critica de novos supercondutores. Além disso, objetiva-se
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encontrar o melhor modelo entre os avaliados e compara-lo com resultados encontrados em

literaturas semelhantes.

1.1 Organizacao do Trabalho

No Capitulo 2 sdo apresentados conceitos basicos, que elucidam brevemente o panorama
da supercondutividade e do aprendizado de maquina. E neste capitulo, que sdo abordados con-
ceitos fundamentais sobre cada modelo de aprendizado de mdquina e seus hiperparametros. No
Capitulo 3 ¢ apresentada a metodologia empregada no desenvolvimento dessa monografia. Além
disso, neste capitulo sdo apresentados os procedimentos usados para: obten¢do dos dados; busca
dos melhores hiperparametros; treinamento e avaliacdo dos modelos. O Capitulo 4 € responsavel
por apresentar superficialmente os dados, mostrar os hiperparametros obtidos pelo processo de
validacao cruzada e discutir os resultados da predi¢dao de cada modelo, com base nas métricas
R?*e RMSE. Ainda, o Capitulo 4 € responsdvel por discutir de forma geral os resultados dos
modelos e comparé-los com a literatura. O Capitulo 5 € usado para sintetizar e concluir as
discussOes gerais sobre a avaliagdo dos modelos. Ademais, este dltimo capitulo € usado para

apresentar futuras pretensoes sobre a continuagdo desta monografia.



2 Fundamentacao Teorica

2.1 Supercondutividade

A supercondutividade foi descoberta em 1911 por Heike K. Onnes, ao estudar o comporta-
mento da resisténcia elétrica dos materiais a baixas temperaturas (COSTA; PAVAO, 2012). Onnes
observou que préximo a 4,2 K a resisténcia do mercurio caia abruptamente, comportando-se
de forma inesperada perante as teorias de condutividade vigentes para época (COSTA; PAVAO,
2012). A esta temperatura foi atribuido o nome de temperatura critica (7..), que representa a
temperatura abaixo da qual determinado sistema entra no estado supercondutor, como brevemente
mencionado na Capitulo 1 (COSTA; PAVAO, 2012).

Basicamente, materiais supercondutores sao aqueles capazes de conduzir corrente com
resisténcia elétrica praticamente zero (HAMIDIEH, 2018). Dentre suas aplicagdes, pode-se
destacar a atuacao de supercondutores em aparelhos de ressondncia magnética, dispositivos
extremamente sensiveis a campos magnéticos (SQUIDs) e bobinas de altos campos, que sdao
empregadas em aceleradores de particulas (HAMIDIEH, 2018).

Por mais tempo que a supercondutividade tenha sido descoberta, ndo h4a uma teoria
consolidada capaz de descrever a ocorréncia deste fendmeno em diferentes faixas de temperatura
critica (COSTA; PAVAO, 2012). Além disso, a obtencao de supercondutores que manifestem
o estado supercondutor em temperaturas proximas ou maiores que a ambiente, ainda € um
grande desafio (COSTA; PAVAO, 2012). Nessa perspectiva, predizer a temperatura critica de
um supercondutor através de um modelo ou teoria cientifica, ainda € um problema em aberto,
como mencionado na Introdu¢do (HAMIDIEH, 2018).

Ap6s a descoberta da supercondutividade, a teoria BCS foi a primeira teoria microscépica
a tentar descrevé-la, entretanto, ela foi incapaz de explicar o comportamento de supercondutores
de altas temperaturas criticas (COSTA; PAVAO, 2012). Apesar disso, a supercondutividade
conseguiu evoluir com as predicdes de 7. e outras propriedades, através da teoria anisotropica
de Midgal-Eliashberg e por métodos baseados em Teoria do Funcional da Densidade (DFT), a
partir de abordagens de primeiros principios (ab initio) (BOERI, 2020).

Na Figura 2.1 sdo apresentadas temperaturas criticas em funcao do ano em que foram
descobertas, para os principais supercondutores deste século. No eixo horizontal superior do
gréfico da Figura 2.1, s@o elucidadas as principais metodologias desenvolvidas (BOERI, 2020):
Teoria Funcional da Densidade Supercondutora (Superconducting Density Functional Theory)
- SDFT(1); interagdo elétron-fonon com Fun¢des Wannier - EP+WAN; teoria anisotrépica ab
initio Migdal-Eliashberg - Anis. ME; aproximag¢ao harmodnica autoconsistente - SSCHA; ab
initio flutuagdes de spin - SCDFT(2).
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Figura 2.1 — Temperaturas criticas e metodologias ab initio mais importantes do século 21 para
a supercondutividade
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Fonte: Boeri (2020)

A fundamentagdo tedrica por trds da supercondutividade e seus métodos computacionais
ab initio, mostrados na Figura 2.1, é pautada nas teorias microscopicas de Bardeen-Cooper-
Schrieffer (BCS) e de acoplamento forte de Migdal-Eliashberg (ME), e na capacidade da DFT
em fornecer espectros eletronicos e bosOnicos precisos para a maioria dos materiais (BOERI,
2020).

Como mencionado anteriormente, a teoria BCS foi a primeira teoria microscopica usada
para descrever a supercondutividade. Ela foi elaborada por Bardeen, Cooper e Schrieffer em 1957
(BOERI, 2020). O fator central desta teoria € a interacdo entre elétrons mediada pela energia
quantizada de vibragdo da rede cristalina (fonons) (COSTA; PAVAO, 2012).

Desse modo, um elétron interage com a estrutura da rede cristalina e a deforma. Apds a
deformacdo, um outro elétron a usa para minimizar sua energia, constituindo um sistema elétron-
fonon-elétron (COSTA; PAVAO, 2012). A Figura 2.2 elucida a deformacgao da rede cristalina
para a formacao do par de Cooper - como sdo chamados os dois elétrons que compdem o sistema
elétron-fonon-elétron descrito nesse pardgrafo (KHANNA, 2017).

Herbert Frohlich foi o primeiro a propor a interacao eletronica mediada por fonons e
formular o aparecimento de um gap proveniente dela (COSTA; PAVAO, 2012).0 gap mencionado

refere-se ao aparecimento de uma banda proibida entre o estado fundamental e o primeiro estado
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Figura 2.2 — A imagem (a) representa a rede cristalina para um metal acima da 7. A imagem (b)
apresenta a formacao do par de Cooper a partir da interacao elétron-fonon-elétron,
para temperaturas abaixo da 7
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excitado do sistema elétron-fonon-elétron (COSTA; PAVAO, 2012). Segundo Costa e Pavao
(2012), o gap em questao emerge no estado supercondutor, pois a interagao elétron-fonon gera

uma atratividade entre os elétrons envolvidos, a qual € maior que a repulsao coulombiana.

Dessa forma, o gap (A) no estado supercondutor é desenvolvido ao redor do nivel de

Fermi (Fr), no qual A é maximo a 0 K e inexistente quando a temperatura (71") € igual a T,
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(BOERI, 2020). A razdo de elétrons que formam pares de Cooper é dada por A/Er ~ 1073, que

muitas vezes é denominada de razdo de condensado de um supercondutor (BOERI, 2020).

Com base no que foi discutido até o momento para a BCS, a Equacao 2.1 elucida um
variacional para uma fun¢do de onda de muitos corpos, que representa a superposicao de elétrons
e pares de Cooper (BOERI, 2020). Dessa forma, a presenca da fracdo de condensado faz com

que o gap aparega no espectro eletrdnico ey.

Z ka’Akk/ tanh \/612{+A12< (2 1)
kk’ Ve + A% 2r .

Na Equagdo 2.1, o potencial Vi i da teoria BCS representa a interagao elétron-elétron,
somente se os dois elétrons com vetores de onda k e k’ estiverem em uma regido de energia wp
ao redor da energia de Fermi (~). Resolvendo a Equacdo 2.1 analiticamente obtém-se (BOERI,
2020):

1

A(T =0) ~ 2wp exp (_W

1
T.=1,1 _ 2.2
)7 RBlc ) 3C"-)DeXp( N(EF)V)’ ( )

no qual V' representa a interagdo potencial entre os elétrons, wp representa a escala energética
dos fonons (como a frequéncia de Debye), N (FEr) é a densidade de estados no nivel de Fermi e
xp € a constante de Boltzmann. Nessa perspectiva, a 0 K a seguinte relacdo envolvendo 7, pode
ser obtida (COSTA; PAVAO, 2012):

2A(0) = 3,52k 5T, (2.3)

Apesar de grandes contribui¢des para o campo da supercondutividade, a teoria BCS
foi capaz de explicar somente supercondutores com acoplamento fraco (A = N(Er)V << 1)
(BOERI, 2020). Além disso, ela foi inapta a explicar o comportamento de supercondutores com
temperaturas criticas mais elevadas (COSTA; PAVAO, 2012).

A descricdo do acoplamento forte para a supercondutividade € feita quantitativamente
pela teoria de muitos corpos de Migdal-Eliashberg (ME), que € baseada em um conjunto de
equacdes diagramdticas autoconsistentes (BOERI, 2020). Neste contexto, os bdsons que mediam
o emparelhamento supercondutor podem ser fonons, plasmons ou flutuacdes de spin (BOERI,
2020).

Ademais, uma abordagem detalhada sobre a teoria de Midgal-Eliashberg usufrui de
conceitos e formulagdes muito complexas e diverge do objetivo desta secdo, que € o de elucidar

teorias usadas na predicao da temperatura critica.

Apesar disso, deve-se mencionar a Equagdo 2.4, conhecida como expressao de Mc-Millan-

Allen-Dynes, obtida para supercondutores que apresentam mediacao por fonons, como mostrado
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por Boeri (2020):

1,04(1
T, = Wiog exp |— ;0 ( +)‘> :
1,2kp )\—/L*(l—i-(), 62)\)

no qual a interagdo elétron-fénon € dada por A, wj,, representa a frequéncia média logaritmica

(2.4)

dos fonons e p* € o pseudopotencial de Morel-Anderson. A equagdo em questdo, concorda com

conceitos provenientes da conhecida teoria ME para acoplamentos fortes.

Pode-se perceber que os esfor¢os para teorizar a predi¢dao da temperatura critica foram
multiplos, como as Equacdes 2.3 e 2.4 elucidam. Entretanto, como ja anteriormente discutido,
nenhuma formulacdo por si foi capaz de descrever com satisfatoriedade a temperatura critica em

diferentes faixas de temperatura.

2.2 Aprendizado de Maquina: Uma visao geral

A inteligéncia artificial (IA) foi considerada uma éarea tedérica por muito tempo, sendo
empregada em alguns poucos problemas (FACELI et al., 2011). Segundo Faceli et al. (2011), foi
a partir da década de 1970 que a IA comecou a ser mais empregada na resolucio de problemas,

através de técnicas computacionais.

Foi 0 aumento da complexidade dos problemas e o acesso aos grandes niimeros de dados
gerados nas ultimas décadas, que propiciaram a necessidade da utilizacdo de ferramentas e
técnicas computacionais mais aprimoradas (FACELI et al., 2011). Nesse contexto, as técnicas de
IA foram oportunas para desenvolver, a partir de uma experiéncia, hipéteses e fungdes capazes
de descrever determinado problema (FACELI et al., 2011).

Faceli et al. (2011) define entdo que o desenvolvimento de uma hipétese ou fungdo, a qual
descreve determinado problema a partir de uma experiéncia passada, é chamado de aprendizado

de méquina - ou em inglés machine learning (ML).

Em suma, o aprendizado de médquina busca otimizar parametros que compdem funcdes e
hipéteses genéricas, a partir de um conjunto de dados (ALPAYDIN, 2020). Assim, o aprendizado
de mdquina consiste em executar um programa de computador, que ajusta os parametros de
determinado modelo matemdtico, a partir dos dados de treinamento — dados usados no processo
de ajuste dos modelos matemaéticos. Posteriormente, o modelo ajustado € capaz de descrever o

problema proposto pelos dados de treinamento.

O aprendizado de médquina usa teorias estatisticas na constru¢do de modelos matematicos,
pois sua tarefa principal € a inferéncia amostral (ALPAYDIN, 2020). O processo de ajuste de
parametros perante os dados, é chamado de treinamento. No treinamento, € necessdrio fornecer
algoritmos capazes de resolver o problema de otimizagdo e de processamento de um grande
volume de dados (ALPAYDIN, 2020).
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Durante o processo de treinamento, o ajuste de parametros das funcdes matematicas
pode nao generalizar bem o problema proposto, podendo ocorrer duas situacdes: o sobreajuste

(overfitting) ou o subajuste (underfitting) nos dados de treino.

No caso de sobreajuste, 0 modelo matemadtico praticamente memoriza os dados, fazendo
com que uma fun¢ao ajustada passe por praticamente quase todos os pontos do conjunto de dados
de treino (GERON, 2019). J4 o subajuste ocorre quando o modelo é incapaz de ajustar seus
parametros, ndo encontrando padrdes nos dados de treino (FACELI et al., 2011). O subajuste € o

caso inverso do sobreajuste.

Como os modelos de ML se otimizam através de padroes encontrados nos dados, seus
desempenhos dependem da qualidade dos mesmos (BISHOP, 2006). Nessa perspectiva, no
contexto do aprendizado de maquina, o pré-processamento e a andlise dos dados sd@o uma das
etapas mais importantes (GERON, 2019).

Na etapa de andlise de dados, busca-se caracterizar cada caracteristica do conjunto de
dados, levantando qual o seu tipo e sua escala. Uma caracteristica representa uma coluna (campo)
na base de dados - ou até mesmo uma coluna em uma matriz de dados X, na qual cada linha
representa uma amostra x; qualquer. Além disso, nesta etapa os dados devem ser explorados

através de diversas medidas e graficos, para o seu entendimento (ALPAYDIN, 2020).

O pré-processamento busca adequar os dados as tarefas as quais eles serdo expostos.
Nesta etapa € comum avaliar a mudanga do formato de dado em cada caracteristica ou fazer a
limpeza de dados discrepantes ou incompletos (ALPAYDIN, 2020).

Para este trabalho, os dados foram explorados graficamente e estatisticamente, como
exibido na Secdo 4.1. Além disso, como a base de dados usada foi criada pela metodologia deste
trabalho, os cuidados com a estrutura e representatividade foram garantidos no desenvolvimento
apresentado na Se¢do 3.2. Dessa forma, a etapa de pré-processamento neste trabalho se baseou

em avaliar a reducdo da dimensionalidade dos dados.

Como o presente trabalho busca predizer a temperatura critica dos supercondutores, a
partir de medidas estatisticas (caracteristicas) extraidas de suas férmulas quimicas, utilizaram-se

algoritmos de regressio baseados em modelos preditivos.

Os modelos preditivos buscam desenvolver um estimador para predizer um rétulo (7%
neste caso) com base em um dominio conhecido (FACELI et al., 2011). Como estamos diante
de um problema de regressao, busca-se desenvolver uma fun¢do que associe um conjunto de

caracteristicas a um rétulo.

Para elucidar melhor o que foi discutido até aqui, este pardgrafo se baseia na enunciagao
de Faceli et al. (2011). Para um conjunto de observacdes conhecidas {(x;, f(x;)),i = 1,...,n},
f simboliza uma fun¢@o nio conhecida, que associa um vetor de caracteristicas x; a um rétulo y;
(T.), que neste caso € o dominio de f. De acordo com Faceli et al. (2011), um modelo de ML

aprende uma aproximacao fpara a funcdo desconhecida f. A aproximacgao fé utilizada para



Capitulo 2. Fundamentagdo Tedrica 9

prever o valor de f para um novo vetor de caracteristicas x (FACELI et al., 2011). A esséncia de

f pode ser descrita pela equagdo abaixo:

v = f(x;) € R, (2.5)

no qual y; representa o valor para um rétulo conhecido.

A qualidade de um estimador em fazer previsoes € mediada por uma funcao de custo,
que avalia 0 quao bem uma estimativa se aproxima do esperado (ALPAYDIN, 2020). A funcao
de custo € usada para aprimorar o modelo, que tende a minimizé-la. Por mais que cada algoritmo
possa possuir uma funcdo de custo, em problemas de regressao geralmente ela estd associada ao

erro quadratico médio, representado abaixo (FACELI et al., 2011):

MSE (f) = %i(?/i_f(xi>>2a (2.6)
i=1

-~

no qual n é o ndmero de instancias do conjunto avaliado, y; é o valor conhecido e f(x;) o predito

pelo modelo.

A Equacdo 2.6 representa o erro da hipdtese ]? em relagdo a diferenca entre o valor
estimado f(xz) e o valor esperado y; (FACELI et al., 2011). O M SE estd vinculado com o
RMSEFE, que € a medida de desempenho tipica em problemas de regressdao. O RM SE € usado
para quantificar os erros de um modelo de ML em suas previsdes, dando um peso maior aos

grandes erros (GERON, 2019). A equagio para o RM SE, deriva da Equacdo 2.6 da seguinte

RMSE (f) —\/MSE (f) @2.7)

Outra medida de desempenho empregada nesta monografia é o coeficiente de deter-

forma:

minagdo R?, que representa a propor¢do de variancia explicada pelas varidveis independentes
(caracteristicas) do modelo (SCIKIT-LEARN, 2020d). Assim, o 2? explica também o quio bem
as amostras nunca vistas pelos modelos serdao previstas por ele (SCIKIT-LEARN, 2020d). A
melhor pontuagio para 122 € 1 e a pior 0. A expressdo abaixo representa como o R? foi calculado
neste trabalho (SCIKIT-LEARN, 2020d):

o S (v T ) .

Y wi-m)"

noqual j = =37 v

Nesta monografia o aprendizado supervisionado foi empregado. Basicamente, para este
tipo de aprendizado os dados usados para treinar o modelo incluem as solu¢des desejadas, chama-
das também de rétulos (GERON, 2019). Exemplificando com a problemética deste trabalho, ao
entregar os dados calculados para cada supercondutor, apresenta-se a0 modelo a sua temperatura

critica.
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Desse modo, suponha-se que os dados estatisticos obtidos através da férmula quimica de
determinado supercondutor, sejam representados pelo vetor de atributos x;. Para o algoritmo em
questao, sao apresentados o conjunto x; € a temperatura critica (y;), associada a x;. Assim, ao
apresentar x; e o seu devido valor ¥;, o modelo aprimora os pardmetros de uma fgenérica, de
forma que ela se aproxime da func¢do desconhecida (Equacdo 2.5), que representa a dependéncia

ideal da temperatura critica aos atributos x;.

Uma forma de saber se o modelo esta generalizando bem o problema analisado, € testa-lo
na predi¢ao de novos rétulos, a partir de novos valores de caracteristicas (x) (GERON, 2019).
Uma opcao para avaliar a predi¢do de modelos sobre novos dados, pode ser a divisao do conjunto
de dados em conjunto de treino e conjunto de teste (GERON, 2019). Assim, é possivel treinar o

modelo utilizando os dados do conjunto de treino, e avali-lo utilizando o conjunto de teste.

Em literaturas como a de Bishop (2006) e Géron (2019), € comum utilizar 80% dos dados
para treinar o modelo e o restante para testd-lo. Ao avaliar o modelo sobre a perspectiva dos dados
de teste, obtém-se o erro de generalizacao (GERON, 2019). Ainda segundo Géron (2019), se

este erro for alto pode indicar que o modelo estd sobreajustado aos dados usados no treinamento.

Como serd discutido adiante neste trabalho, cada modelo (algoritmo) de ML possui
hiperparametros que regulam os parametros relacionados a sua formulacdo matemética. O
processo de controle dos hiperparametros € chamado de regularizacdo, e busca restringir o ajuste
de parAmetros dos modelos aos dados (GERON, 2019). Dessa forma, o processo de regularizacio
busca evitar sobreajustes nos dados de treinamento, fazendo com que o modelo consiga descrever

o problema proposto da maneira mais genérica possivel (SCIKIT-LEARN, 2020a).

Entao, uma maneira de diminuir o erro de generalizacdo € ajustar os hiperparametros,
de forma que eles possam generalizar melhor o modelo de ML empregado (GERON, 2019).
Entretanto, usar somente o conjunto de teste para avaliar determinado arranjo de hipepardmetros,
pode conduzir o modelo a uma sobreposi¢ao sobre os dados de teste (SCIKIT-LEARN, 2020a).
Nessa situagdo, os hiperparametros sao ajustados para conduzir melhores resultados no conjunto

de teste, ajustando o modelo a este conjunto.

Para contornar este problema, usa-se um procedimento denominado validagdo cruzada.
O processo de validacdo cruzada busca criar um conjunto de validacio nos dados de treinamento,
de modo a deixar o conjunto de teste somente para avaliar o desempenho final do modelo treinado
(FACELI et al., 2011). Assim, a maior parte do conjunto de treino € usada para treinar o modelo

e uma pequena parte deste conjunto é usada para avalia-lo.

O processo de treinamento € repetido algumas vezes, alternando os dados do conjunto
de validacao. Desse modo, € possivel testar o melhor arranjo de hiperparametros em cada ciclo
de treinamento (SCIKIT-LEARN, 2020a). Ademais, uma melhor explicacdo do processo de
validagdo cruzada, direcionada aos propédsitos deste trabalho, € feita no Capitulo 3 por ser uma

das principais etapas da metodologia.
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Por fim, os modelos usados nesta monografia, bem como seus fundamentos, serdo ex-
plicados nas proximas subsecodes. Todos os modelos nesta monografia foram treinados sobre a
perspectiva do aprendizado supervisionado. Além disso, todos os modelos foram submetidos ao
processo de validacao cruzada para determinacao dos melhores hiperparametros. A avaliacao
dos resultados de cada modelo foi feita pelas medidas de desempenho RM SE e R?, sobre os
dados de teste.

2.2.1 Modelos lineares

Os modelos apresentados nesta se¢do t€m como objetivo a tarefa de regressao, na qual ]?
€ formulada a partir da combinacdo linear das caracteristicas da base de dados. Assim, prode
ser descrita da seguinte forma (SCIKIT-LEARN, 2020c):

f(w, X) = wo + W11 + ... + WLy, (2.9)

no qual fé a fungdo que estima valores para os rétulos, p o nimero de caracteristicas (ou
atributos), w = (wy, ..., w,) 0 vetor com os coeficientes (ou pesos dos atributos) e wy € o termo
de polarizagdo (ou interceptacdo). As colocacdes entre parénteses possuem o mesmo significado
dos termos que as precedem. Por exemplo, na literatura os nomes das colunas das bases de dados

podem ser chamados de atributos ou caracteristicas.

2.2.1.1 Regressao Linear Miiltipla - Método dos Minimos Quadrados

Para este modelo, ocorre um ajuste dos coeficientes w = (wy, ..., w,) para minimizar a
soma residual dos quadrados entre o rétulo observado (7, observada) e o previsto (7. prevista).
Assim, para treinar este modelo deve-se resolver matematicamente a seguinte equagao (SCIKIT-
LEARN, 2020c):

HBHHXW—YH%, (2.10)

sendo X um conjunto de dados em que cada linha representa uma amostra qualquer x;. E'Y
representa a matriz de uma coluna, que contém todos os rétulos (medidas de 7). Em suma, uma

amostra x; de X, tem sua y; correspondente, sendo que y; estiem Y.

A Equacao 2.10 representa a funcao de custo para a Equacdo 2.9. Assim, ajustando os
coeficientes - parametros deste modelo - com dados conhecidos, € possivel consolidar uma fung¢ao

que generalize o problema de predi¢do e possa predizer valores para novas amostras.

O ||.||2 na Equagdo 2.10 representa a norma euclidiana. Segundo Géron (2019), a norma
||.||x pode ser generalizada da seguinte forma:

1
k
9

V]| = (\v0|k+|vl|k+...—|—|vn|k) @.11)

no qual v € um vetor como n elementos. A norma apresentada na Equacao 2.10 corresponde ao

RM SE, apresentado na Equacdo 2.7 (GERON, 2019). Nessa perspectiva, é possivel explicar
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porqué o RM SE é mais sensivel a dados discrepantes. Como pode ser visto na Equagao 2.11,
quanto maior o k mais a norma se concentra em grandes valores (GERON, 2019). E por esse
fato que a raiz do erro quadratico médio € mais usada do que o erro médio absoluto, no contexto
de ML.

Perante o pardgrafo anterior, € possivel inferir que a Equacdo 2.10 representa o M SFE.

Dessa forma, a fun¢do de custo, neste caso, € simplesmente igual ao erro quadréatico médio.

2.2.1.2 Elastic Net

O modelo Elastic Net foi empregado para tentar avaliar o efeito da regularizagcdo sobre o
método de regressdo linear multipla. O modelo Elastic Net € uma mistura dos modelos de Ridge
e Lasso. Para este modelo, pode-se controlar o hiperparametro p, que representa a taxa de mistura
entre os dois modelos mencionados (GERON, 2019).

A funcdo de custo Elastic Net apresentada por Géron (2019), pode ser escrita da seguinte
forma:

1—
7(w) = MSB(w) + pa ], + L2 i, a1

o termo M S FE(w) apresenta basicamente a fun¢do de custo mostrada na Equagdo 2.10 e o é um

hiperparametro, o qual seu valor indica o quéo regularizado o modelo deve estar.

O termo com norma k = 2 (norma euclidiana) é proveniente da regressao de Ridge. Este
termo busca manter os pardmetros do modelo (neste caso o w) o mais reduzido possivel (GERON,
2019). O hiperparametro «, que acompanha este termo, busca traduzir o quanto o modelo deve
ser regularizado. Segundo Géron (2019), se « for muito pequeno o modelo tende a uma regressao

linear multipla, se for muito grande ele tende a fazer os pesos (w) ficarem préximos de zero.

O termo com norma k£ = 1 representa o modelo de regressao de Lasso. Devido a norma,
este modelo procura extinguir os pesos relacionados s caracteristicas menos relevantes (GERON,
2019). Para este modelo, o hiperparametro o tem a mesma representatividade do modelo de
Ridge.

Quando o hiperparametro p € zero, a Equacao 2.12 € igual a fun¢ao de custo para o

modelo Ridge. Quando p € um, a Equacao 2.12 € igual a funcdo de custo do modelo Lasso.

Autores como Hamidieh (2018) e Bishop (2006) apresentam a funcao de custo como a
apresentada na Equacdo 2.12. Assim, o ajuste do modelo € proveniente da minimizacao de uma
funcdo J. Por outro lado, a documentacdo da biblioteca Scikit-learn apresenta a funcio de custo

como a apresentada pela Equacdo 2.10.

E importante mencionar que os hiperparimetros « e p sdo determinados pelo processo
de validacao cruzada. Neste processo, varias combinacdes de « e p sdo testadas no conjunto de
treino. A combinacgdo que apresenta os melhores valores para a medida de desempenho RM SE,

¢ a escolhida para ser incorporada ao modelo.
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2.2.2 MaAquinas de Vetores de Suporte - Support Vector Machine (SVM)

Seguindo a explicagdo tedrica de Faceli et al. (2011), o modelo de SVM para a tarefa
de regressdo visa encontrar uma fungio h(x) que gere saidas continuas perante os dados de
treino, desviando um valor maximo de ¢ do rétulo esperado. Além disso, requer-se para h(x)
uniformidade e regularidade (FACELI et al., 2011).

Considerando inicialmente um comportamento linear para h(x), tem-se o hiperplano
(FACELI et al., 2011):
h(x) =w-x+0, (2.13)

no qual W - X representa o produto escalar entre os vetores w e X, W neste caso representa um

vetor normal ao hiperplano e ﬁ com b € R € a distancia do hiperplano em rela¢do a origem.

O modelo entado € ajustado para encontrar um pequeno w para a Equacao 2.13, isto é

feito através da minimizagdo da norma ||w|| como segue (GERON, 2019):

min lw? (2.14)

w,b

Além disso, a otimizacdo mostrada na Equacdo 2.14 € sujeita as seguintes restricoes (FACELI et
al., 2011):

—w-x; —b<g

v U= (2.15)
WX +b—y <S¢

Nessa perspectiva, Faceli et al. (2011) resume que a fung@o linear busca associar os pares (x;, ;)

do conjunto de treino com uma precisao de €. Ademais, este processo pode ser elucidado na

Figura 2.3.

Dessa forma, como sugere a Figura 2.3, espera-se obter uma A na qual os dados usados

no treinamento fiquem na regido sombreada ao redor dela.

Em problemas reais dificilmente € possivel enquadrar os dados nas margens delimitadas
por € e —e. Nessa perspectiva, para lidar com ruidos e outliers, deve-se introduzir varidveis de
folga, que possibilitam que algumas amostras predigam fora da margem € e —¢, elucidada na
Figura 2.3 (FACELI et al., 2011).

Desse modo, Faceli et al. (2011) propde o seguinte problema de otimizacao:

o1 - _
min_ o ||W2H +C (lzl& +51> ; (2.16)

W7b7§,g

no qual ¢ e £ representam as varidveis de folga e C' uma varidvel que equilibra a regularizagdo de

h com a quantidade de desvios permitidos. Assim, obtém-se as seguintes restri¢des:

Yyi— WX —b<e+¢
W'Xi+b—yi§€i+g (2.17)
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Figura 2.3 — Tlustra¢do do procedimento realizado por um SVM para uma tarefa de regressao

v

Fonte: Faceli et al. (2011)

E muito comum no ambito do aprendizado de maquina, resolver os problemas de oti-
mizag¢do empregando a formulagdo lagrangiana. Por mais que explicar a empregabilidade da
formulagdo lagrangiana esteja fora dos objetivos deste trabalho, ela se faz necessdria para elucidar

a utilizacdo dos SVMs na metodologia apresentada.

Resumidamente, para resolver problemas de otimizac¢do, como apresentado na Equacdo
2.16, modela-se uma expressao lagrangiana que abranja o problema de otimiza¢do em questdo, e
suas restricoes associadas a um multiplicador de lagrande. Dessa forma, a partir de uma expressao
lagrangiana, calculam-se suas derivadas parciais para o valor nulo. Os resultados das derivacdes

parciais sdo usados para substituir termos na equagdo lagrangiana inicial.

Usando o procedimento apresentado no pardgrafo anterior para as Equacoes 2.16 e 2.17
¢é possivel obter a seguinte expressdo (FACELI et al., 2011):

1 _ _ n _ n _
max — Z (o — @) (o —@;) K(x;,%x;) — e; (o — @) + ;yz (; —@;), (2.18)

o,0
t,j=1

no qual «; e @; sdo varidveis (multiplicadores) de Lagrange e K € a funcdo kernel. K emerge do

produto interno gerado na manipulacdo da Equacdo 2.17 na formulagdo lagrangiana. As restri¢des
para a Equagdo 2.18 ficam (FACELI et al., 2011):

{Zf?:l (i —@;) =0 (2.19)
&iaai € [Oa C]

Para finalizar a explicacdo do uso da formulacdo lagrangiana, deve-se colocar que dentro

da margem, entre € e —e¢, as varidveis de Langrange sao zero.
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Dessa forma, o problema de otimizacao para as SVM € de maximizar a Equacgao 2.18.
No ambito desta monografia, a Equagao 2.18 foi otimizada para trés funcdes de kernel K. Estas
fungdes podem ser extraidas da Tabela 2.1. Os parametros o, e d sdo determinados para cada

problema.

Tabela 2.1 — Tipos de Kernel avaliados na otimiza¢do das SVM

Tipo de kernel ~ Funcio K (x;,x;) | ParAmetros |
Polinomial (0(x;-xj)+K) §,ked
RBF exp (—o||x; — Xj||2> o

Fonte: Faceli et al. (2011)

Além dos K apresentados na Tabela 2.1, a condicao linear para as SVM foi avaliada para
a seguinte configuracdo do Kernel Polinomial: 6 = 1, d = 1 e k = 0. Quando nao calculados
pelo préprio algoritmo, os parametros o, x e d foram obtidos através do processo de validacao

cruzada.

2.2.3 Arvores de Decisio

As drvores de decisdo sdo comumente empregadas para as tarefas de classificagdo. Entre-
tanto, elas podem ser usadas para tarefas de regressao, conseguindo descrever problemas bastantes
complexos (GERON, 2019). Baseando-se na fundamentacio de Géron (2019), o funcionamento

de uma arvore de decisdo pode ser descrito a partir do exemplo ilustrado pela Figura 2.4.

Figura 2.4 — Exemplo de uma 4rvore de decisdo direcionada a tarefa de regressao

X1 «=0.1973
mse = (0.0978
samples =200
value = 0.3539

Verdadeiro Falso

X1 <=0.0917 X1 =<=0.7718
mse =0.0377 mse =0.074
samples = 44 samples = 156

value = 0.6894 value = 0.2592

!

mse = 0.0131 J mse = 0.0151

mse = 0.0359
samples =46
value= 0.6146

samples = 24 samples =110
value= 0.5522 value =0.11086

[

Fonte: Géron (2019)
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A Figura 2.4 representa o desenvolvimento de uma drvore de decisdo para uma carac-
teristica, ou seja, representa apenas um atributo do conjunto de treino. Em problemas reais, a

arvore de decisdo engloba todas as caracteristicas do conjunto de treino em sua construcao.

Supde-se que determinada caracteristica x; apresente o valor 0,8 e supde-se também
que a arvore da Figura 2.4 prediga 7. a partir de ;. Assim, uma amostra X; com caracteristica
x1 = 0, 8 entra na raiz da arvore (primeiro quadrado de cima para baixo na Figura 2.4). Na raiz,
ela encontra a condi¢do x; < 0,1973. Para esta condicao, a amostra apresenta o resultado Falso,
assim, ela caminha para a direita na Figura 2.4. E dessa forma, a amostra vai passando por cada

nivel (profundidade) da arvore, até atingir o dltimo n6 da folha construido.

Para a mostra em questdo, o n6 da folha prediz uma temperatura critica de 0,6146 K. A
previsdo neste n6 € simplesmente a média dos rétulos das 46 amostras de treinamento, que foram
empregadas em sua constru¢io (GERON, 2019). Além do valor previsto, é possivel recolher

informacgdes sobre o M SE da predicdo, que deriva das 46 amostras que compdem o0 no.

A Figura 2.5 apresenta a f, que emerge da arvore da Figura 2.4, para uma profundidade
igual a 2 e a 3. O valor previsto por fAem cada intervalo da Figura 2.5, refere-se a média dos

rétulos das amostras de treinamento no intervalo (GERON, 2019).

Figura 2.5 — Previsao do modelo Arvore de Decisdo com profundidade 2 (imagem do lado
esquerdo) e profundidade 3 (imagem do lado direito)

10 : max_depth=2 | 10 : max_depth=3
[ o 0 - - ! . i
osf, +]. Y | Profundidade=1,.+2] o} ]!.
b * . | Profundidade=0 ' ' S
0.6 T, 5 06| : :".'l .
o :.*" '.,' e P-C.,.‘:_ Profundidade=1
Yoaf '+ ° 4 & oap ' * o
1 - e ' v
Profundidades | 4 . %" - ' —'—I. b . e
0.2 \ ‘t.'{i" ¥, 0.2 . (.‘-.A.-.- -r: .
. o gy i ey
oo ! P Lt ! oof i1 LS
I . PRI S 1 ' - LS
| * >, ' ] " -,
-0.2 L L -0.2 L

0.2 0.4
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Fonte: Géron (2019)

Exemplificado pela Figura 2.5, o algoritmo busca dividir as regides de diferentes maneiras,

de modo a fazer fse aproximar ao maximo das amostras de treino (GERON, 2019).

Ademais, o algoritmo do modelo Arvore de Decisio tende a minimizar a seguinte fungio
de custo (GERON, 2019):

Mesquerda Mdireita
J(ka tk) = MSEesquerda + m MSEdireita;

m

(2.20)

no qual k£ representa uma caracteristica qualquer, ¢, um limiar (z; < 0, 1973, por exemplo),

Mesquerda/direita NUMero de amostras em cada divisdo (subconjunto),m o nimero de amostras
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avaliadas pela fungdo de custo € M S Ecsquerda,direita © €110 quadritico médio dos subconjuntos a

serem divididos. Assim, tém-se o calculo em cada né (GERON, 2019):

Ziené(ﬁlé - yi>2

MSE,s =
ané ZiEné Yi

2.21)
fnc’) -

Ap6s o algoritmo do modelo Arvores de Decisio dividir o subconjunto dos dados de treino
em dois, utilizando a Equagao 2.20, ele utiliza os mesmos artificios para os outros subconjuntos,

até alcancar uma 4rvore como a da Figura 2.4 (GERON, 2019).

As drvores de decisdo sdo bastantes propensas a sobreajustes, pois podem se desenvolver
até suas estruturas chegarem bem préximas aos dados de treinamento (GERON, 2019). Assim,
regularizar alguns hiperparametros das drvores de decisdo € fundamental para generalizar bem
uma hipétese f A Figura 2.6 mostra o comportamento de uma fnﬁo regularizada e outra fcom

restricdes no nimero minimo de amostras que um n6 da folha deve possuir.

Figura 2.6 — Efeito da regularizacio no modelo Arvore de Decisdo

Sem restricoes
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Fonte: Géron (2019)

O gréfico a esquerda na Figura 2.6 apresenta sobreajuste nos dados de treino e o grafico
a direita apresenta uma fregularizada para o modelo Arvore de Decisdo. As regularizacdes
mais empregadas nas drvores de decisdo sdo nos seguintes hiperparametro (GERON, 2019):
profundidade da drvore; nimero minimo de amostras que um né deve ter antes de se dividir;

nimero minimo de amostras que um né da folha deve possuir.

Ressalta-se aqui, que os melhores valores para os hiperparametros sao levantados no

processo de validacdo cruzada.

2.2.4 Floresta Aleatéria e Arvores Extremamente Aleatérias

As Florestas Aleatorias e as Arvores Extremamente Aleatérias fazem parte de uma técnica

conhecida como Ensemble Learning. Esta técnica se baseia em usar diversos estimadores para
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melhorar os resultados dos estimadores individuais (GERON, 2019). Até o presente momento,

apenas estimadores individuais foram abordados nesta monografia.

Ambos modelos tratados nesta se¢io sdo baseados na construcio de diversas arvores de
decis@o. Assim, esses modelos se baseiam nessas drvores para fazerem suas previsoes. Além de
usarem diversas arvores de decisao, os modelos desta secao buscam criar arvores de decisao com

critérios aleatorios. Dessa forma, eles tendem a criar diversas arvores de decisao diferentes.

Como foi mostrado na Secdo 2.2.3, as arvores de decisdao tendem a escolher a melhor
caracteristica para dividir um novo né. Apesar disso, 0 modelo Floresta Aleatéria busca escolher
aleatoriamente uma caracteristica para dividir um né, no momento de constru¢do de suas arvores
de decisao (GERON, 2019). Assim, as Florestas Aleatdrias tendem a gerar uma ampla diversidade

de arvores, como ja mencionado.

Ademais, a aleatoriedade injetada nas florestas, no momento de construgdo das arvores,
faz com que as arvores de decisdo possuam erros de previsao dissociados. Por outro lado, por
possuir um grande nimero de arvores estes erros sao corrigidos, uma vez que a predicao dos
modelos ensemble € feita pela média das predi¢gdes dos estimadores (SCIKIT-LEARN, 2020b).

As Florestas Aleatdrias atingem uma variag@o reduzida por combinarem diversas drvores,
assim, elas se submetem a um aumento no viés (SCIKIT-LEARN, 2020b). A pequena variancia

atingida € usualmente associada a uma predi¢do mais generalizada (SCIKIT-LEARN, 2020b).

Nas Arvores Extremamente Aleatdrias, além de escolher uma caracteristica aleatéria
para dividir um n6 das arvores de decisdo, o limiar desta caracteristica também € escolhido
aleatoriamente (GERON, 2019). Este fato torna o treinamento das Arvores Extremamente Ale-
atdrias mais rdpido do que o das Florestas Aleatdrias, uma vez que encontrar o melhor limiar
para determinada caracteristica € uma das tarefas mais demoradas no processo de construcao das
rvores de decisdo (GERON, 2019). Como afirma Géron (2019), troca-se novamente um maior

viés por uma menor varidncia no modelo Arvores Extremamente Aleatdrias.

Por fim, foi possivel entender que ambos modelos usufruem da construcao aleatéria de
diversas arvores de decisdo. Além disso, apresentou-se que a utilizacdo dessas drvores pode
diminuir a variancia das predi¢des, a um custo no aumento do viés. Em questao da aleatoriedade
nas arvores de decisdo, pode-se afirmar que as Arvores Extremamente Aleatérias produzem

arvores muito mais aleatdrias que as Florestas Aleatdrias.

Para estes modelos, os hiperparametros avaliados pelo processo de validagcao cruzada
foram os mesmos das arvores de decisdo. Entretanto, nos modelos desta sec¢do foi avaliado

também a quantidade de arvores de decisdo construidas.
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2.2.5 Gradient Boosting

O Gradient Boosting € um método ensemble que usufrui de diversos estimadores. Nesta
monografia, os estimadores usados para o modelo Gradient Boosting também sdo arvores de
decisdo. Ao invés de construir diversos estimadores independentes, o algoritmo deste modelo
busca adiciond-los sequencialmente, de modo que eles possam corrigir os erros residuais dos
estimadores anteriores (GERON, 2019).

A seguinte formulacdo matemadtica pode ser feita para o Gradient Boosting (SCIKIT-
LEARN, 2020b):

fi = Fu(xi) Zh Xi), (2.22)

no qual f; representa a estimagdo para um ;, com base em uma amostra genérica x;. Além disso,

h., sdo os estimadores para as drvores de decisdo e M € o nimero de estimadores (arvores).

Como mencionado, os estimadores sdo adicionados sequencialmente, assim, podem ser
descritos da seguinte forma (SCIKIT-LEARN, 2020b):

Fip(xX) = Fpp_1(X) + hun (), (2.23)

no qual A, (uma nova arvore) € introduzido ao estimador anterior (F},,_;) para minimizar a soma
de suas perdas (L,,,). Desse modo, a minimizacao da soma das perdas pode ser escrita da seguinte
maneira (SCIKIT-LEARN, 2020b):

hpp = m}}n L, = m}}nzl U(yi, Frno1(x3) 4+ h(x;)). (2.24)

Para esta monografia, [(y;, F(x;)) representa uma fungdo de perda com base no método
dos minimos quadrados. Os minimos quadrados sdo escolhidos por possuirem robustez em
resolver problemas de regressiao (SCIKIT-LEARN, 2020b).

O Fy inicial, que emerge da Equacao 2.24, representa a média dos rétulos quando
[ for referéncia ao método dos minimos quadrados (SCIKIT-LEARN, 2020b). Expandindo
Uy, Frno1(x;) + hym(x;)) por aproximagao de Taylor, tem-se (SCIKIT-LEARN, 2020b):
8l s F X;
i Pt %) I 50) = 10, s (00) + o) | 295D g
OF(x;) F=Fp,

M] ¢ resolvido facilmente para uma forma
OF) | p_p

fechada. Chamando o termo das derivadas parciais de g;, o seguinte problema de otimizacao ¢

Como [ é diferencidvel, o calculo de [

alcancado:

Ry, & min Z h(x;)g;. (2.26)

A Equagao 2.26 sugere que o estimador h,,, busca prever um gradiente negativo das
amostras anteriores durante seu reajuste, configurando um gradiente descendente (SCIKIT-
LEARN, 2020b).
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Para regularizar as corre¢des nos estimados, € introduzido um termo denominado taxa
de aprendizagem. Assim, cada vez que uma arvore (h,,) é adicionada ao modelo, a taxa de
aprendizado dita o quanto ela vai corrigir o g; do estimador anterior a ela. Segundo Scikit-learn

(2020b), a taxa de aprendizado v regulariza o modelo da seguinte forma:

Fo(x) = F1(X) + vhp(x). (2.27)

A Figura 2.7 ilustra a atuag@o de novos h,,, (drvores) no modelo Gradient Boosting. Como
pode ser visto na figura, novos estimadores tendem a se ajustar sobre os residuos dos estimadores
anteriores. Dessa maneira, a combinacdo dos estimadores tende a gerar uma f que descreve

melhor os dados de treino.

Figura 2.7 — Ajuste sobre os residuos pelo método Gradient Boosting
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Os hiperparametros avaliados pelo processo de validagao cruzada neste modelo foram:

nimero de estimadores M ; taxa de aprendizagem v; profundidade das drvores; nimero minimo

de amostras para dividir um novo nd; nimero minimo de amostras para que um n6 da folha exista.
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2.2.6 Rede Neural Profunda

A partir da década de 1940, despertou-se o interesse em determinar modelos mateméticos
e computacionais inspirados na estrutura do sistema nervoso e na capacidade de aprendizagem
humana. McCulloch e Pitts (1943) foram dois dos pioneiros na drea, desenvolvendo estudos sobre
descri¢cdo matematica dos neurdnios artificias, de modo que pudessem realizar fungdes 16gicas
(FACELI et al., 2011). Foram eles também responsaveis por demonstrar que uma rede formada
por esses neurdnios possuiam grande capacidade de descrever fungdes complexas (FACELI et
al., 2011).

Por mais que outros pesquisadores importantes como Hebb (1949) - pesquisador da
capacidade de aprendizado dos neurdnios - € Rosenblatt (1958) - criador da teoria dos perceptrons
- tenham alcangado grandes feitos na drea, as pesquisas em sistemas neurais artificiais foram
interrompidas na década de 1970 (FACELI et al., 2011). Entretanto, o aumento da capacidade de
processamento dos computadores, o interesse em processamento paralelo e novas propostas de
configuracOes para as redes neurais, contribuiram para que as pesquisas na area retornassem na
década de 1980 (GERON, 2019).

As Redes Neurais Artificiais se baseiam no funcionamento do sistema nervoso humano.
Desse modo, elas sdo compostas por neurOnicos artificias, que sdo densamente interconectados

(FACELI et al., 2011). Estes neurdnios sdo capazes de computar fungdes matematicas.

Segundo Faceli et al. (2011), nas arquiteturas das Redes Neurais Artificiais, as conexdes
simulam as sinapses bioldgicas. Além disso, as conexdes entre neurdnios possuem pesos associa-
dos, que regulam a atividade do neurdnio na rede. Os pesos das conexdes sdo ajustados durante o
processo de aprendizado, que nesta monografia se configura como supervisonado. Ademais, estes
pesos podem indicar comportamento excitatério, quando forem positivos, e inibitério, quando
forem negativos (FACELI et al., 2011).

A Figura 2.8 apresenta uma estruturagao simples para um neurdnio artificial. Na figura,
as Entradas representam a admissao dos dados pela unidade 16gica apresentada. Apds a entrada
dos dados no neurdnio, uma fun¢do matematica (representada por f, na Figura 2.8) é responsdvel
por pondera-los e associd-los. A saida do neurdnio representa a resposta dada por f, (FACELI et
al., 2011).

Para representar matematicamente as func¢des nos neurdnios, Faceli et al. (2011) escreveu

a seguinte expressao para a entrada de um neurdnio u:

d
u(x,w) = E TWj, (2.28)
j=1
no qual x é um objeto com d caracteristicas, podendo ser escrito como x = [xy, Za, ..., 4],

e W representa um vetor com os pesos de d terminais de entrada, podendo ser escrito como

W = [wy, wy, ..., wy). Ressaltando o que ja foi mencionado, os pesos associados a um neurdnio
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Figura 2.8 — Estrutura simplificada de um neurdnio artificial

Entradas Pesos

;ﬁ @)=
. P
Sinal _@",—’

Fonte: Faceli et al. (2011)

podem apresentar sinal positivo, negativo ou nulo. Quando um peso for nulo, implica que a

conexao associada a ele € inativa (FACELI et al., 2011).

Conforme apresentado por Faceli et al. (2011), a saida associada ao neurdnio € regulada
por uma fungao de ativacdo f,. Exemplos dessas fun¢des podem ser elucidados na Figura 2.9.
A funcdo Linear, apresentada na Figura 2.9, implica que a saida assume o valor de u. A fungdo
Limiar impde uma saida igual O ou 1, € comum também usar uma func¢do limiar que resulte
em 1 ou -1. Para a funcao Limiar, ilustrada na Figura 2.9, o neur6nio se torna ativo quando a
soma v ultrapassa o limiar (f,(u) = 1) (FACELI et al., 2011). J4 a fun¢ao Signomial, usufrui de
diferentes inclinacOes e representa uma func¢ao de ativagdo continua e diferencidvel (FACELI et
al., 2011).

Figura 2.9 — Exemplos de func¢des de ativacao

f(a T f T foo t

—

(a) Linear (b) Limiar (c) Sigmoidal

Fonte: Faceli et al. (2011)

Para este trabalho, utilizou-se uma fun¢ao de ativagao conhecida como ReLLU, esta funcao

pode ser ilustrada pela Figura 2.10. A fun¢ao RelLU € frequentemente usada em problemas de
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regressao (ALPAYDIN, 2020).
Figura 2.10 — Ilustracao da funcdo ReLu

flu) = max{0, u)

Fonte: Pauly et al. (2017)

A rede perceptron € considera a mais antiga Rede Neural Artificial a ser submetida ao
processo de treinamento (GERON, 2019). Ela se estrutura em apenas uma camada de neurdnio e

apesar disso, consegue atingir boa acurdcia para diversos problemas de classificagao (FACELI et
al., 2011).

A Figura 2.11 apresenta a estrutura da primeira rede perceptron, que era composta por
apenas um neurdnio (FACELI et al., 2011). Ainda, como pode ser visto na Figura 2.11, a rede

perceptron possuia uma retina, que era responsavel por pré-processar os objetos de entrada
(FACELI et al., 2011).

Figura 2.11 — Primeira rede perceptron

Fonte: Faceli et al. (2011)

O treinamento da rede perceptron se baseia na correcao do erro de predi¢do, perante os
pesos associados ao neurdnio. Segundo Faceli et al. (2011), os ajustes nos pesos se dao pela
seguinte maneira:

~

wi(t+ 1) = w;(t) + val(y — f(x:)), (2.29)
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no qual w;(¢) € o valor do peso da j-€sima conexao no tempo ¢, v € a taxa de aprendizado para este
caso, mf representa o valo da j-ésima caracteristica da amostra de entrada x; e f(xz) ¢ saida dada
pela rede, perante a saida esperada y; no tempo ¢. Assim como no caso do Gradient Boosting, a
taxa de aprendizado representa a expressividade do ajuste no peso w;(t + 1). De acordo com
Faceli et al. (2011), a magnitude da taxa de aprendizado infere na velocidade de convergéncia da

rede.

Por mais que as redes perceptrons tenham sido propostas para tarefas de classificacao,
elas podem ser usadas também para regressao. A grande diferenca entre a tarefa de classificacdo
e regressao estd na funcdo de ativagdo. Para tarefas de classificacdo, a saida deve ser discreta,
desse modo, uma fun¢do como a Limiar poderia ser empregada. Na regressao a saida ]?(xl) deve
ser continua, assim, uma func¢do de ativacdo como a Linear poderia ser incorporada. Ambas

funcoes de ativacdo usadas neste exemplo podem ser encontradas na Figura 2.9.

A descontinuidade histérica em pesquisas nesta drea, mencionada no inicio desta sec¢ao,
se deve & monografia elaborada por Marvin Minsky e Seymour Papert (GERON, 2019). Nela,
eles destacaram diversas fraquezas nos perceptrons, relacionadas a problemas de modelagem
de fung¢des nao lineares (FACELI et al., 2011). Entretanto, algumas das limitacdes impostas por
Marvin e Seymour foram contornadas ao se implementar mais camadas de neurdnios em redes
perpectrons (GERON, 2019). O sistema com diversas camadas de perceptrons foi denominado
Perceptron Multicamada (Multi Layer Perceptron (MLP) em inglés). Além disso, como retratado
por Géron (2019), quando uma Rede Neural Artificial possui mais de uma camada oculta -

camada entre as camadas de entrada e saida - ela € denominada Rede Neural Profunda.

A Figura 2.12 mostra a configuragdo mais comum para uma rede MLP. Nessa configuragao,
todos os neurdnios de uma camada [ estdo conectados a todos os neurdnios de uma camada
[ + 1 (FACELI et al., 2011). A camada de entrada é composta por todas as caracteristicas 7
(j =1,2,...,d), que compdem determinada amostra x;, como pode ser observado na Figura 2.12.
A camada de saida € arquitetada para cada tipo de tarefa, para problemas de regressao geralmente

~

a camada de saida possui apenas um neurdnio, que entrega f(x;) como retratada a Figura 2.12.

O treinamento das MLP foi possivel gracas ao algoritmo back-propagation, baseado em
gradiente descendente (FACELI et al., 2011). Para a utilizacao do gradiente, deve-se garantir que

a funcdo de ativagdo seja diferencidvel e continua perante as condicdes do problema.

O algoritmo back-propagation funciona da seguinte maneira: a camada de entrada trans-
mite os dados para a primeira camada intermedidria, nesta camada, ocorre a aplicacdo da fung¢do
de ativacao pelos neurdnios, que geram valores de saida, os quais sao utilizados pelas proximas
camadas como valores de entrada (FACELI et al., 2011). O processo continua até os neurénios
da camada de saida produzirem seus valores de saida f(xz) Entio, f(xz) € comparado com o
valor desejado y;. Esta comparacao representa o erro da rede perante o objeto x; (FACELI et al.,

2011).



Capitulo 2. Fundamentagdo Tedrica 25

Figura 2.12 — Rede Neural Profunda para problemas de regressao

Camadaocultal Camadaoculta2 Camada de saida
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Camada de entrada

Fonte: o Autor

O valor do erro da rede € utilizado para ajustar os pesos de entrada dos neurdnios da
camada de saida até a primeira camada intermedidria (FACELI et al., 2011). A equacdo a seguir

apresenta o ajuste dos pesos para o algoritmo back-propagation (FACELI et al., 2011):
wi(t+ 1) = wj(t) + vald, (2.30)

no qual wj; € o valor do peso entre o neurdnio [ € a j-€sima caracteristica de uma amostra x; ou
j-€simo valor de saida para um neurdnio de camadas internas. J; representa o erro associado ao

neurdnio [ e 27 o valor da saida de um neuronio ou o valor da caracteristica.

Segundo Faceli et al. (2011), os erros sdo conhecidos apenas nos neurénios da camada de
saida. Desse modo, os demais precisam ser estimados. Nessa perspectiva, os erros dos neurdnios
das camadas intermedidrias sdo estimados com base nos erros da préxima camada (FACELI et al.,
2011). Assim, a estimativa comeca do final da rede e termina na primeira camada intermedidria.
A formulacdo empregada nas estimativas dos erros, pode ser apresentada a seguir (FACELI et al.,
2011):

5 = { frel Se Ny € Csqi 231)
fo D widy  semny € Cint

Na Equacdo 2.31, n; representa o neurdnio [, c,,; a camada de saida, c;,; a camada

intermedidria, f/ a derivada parcial da fungdo de ativacdo e ¢; o erro do neurdnio da camada de
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saida (FACELI et al., 2011). O ¢; possui a seguinte formulacdo quadratica (FACELI et al., 2011):

k

1 —~
e =3 > (e — fo) (2.32)

g=1

A derivada da func¢do de ativagdo norteia o algoritmo sobre o ajuste dos pesos. Desse
modo, se f/ for positiva, um ajuste deve ser feito no sentido de minimiza-la, uma vez que ela
representa o aumento da diferenca entre y; e f;. Se negativa, f. representa contribui¢do para que

a saida da rede f; seja préxima de y;.

Por fim, com base na apresentacdo tedrica mostrada nesta secdo, os hiperparametros
avaliados nesta monografia para a Rede Neural Profunda foram: nimero de camadas; nimero de
neurdnios por camada; nimeros de dados que passam pela rede em cada ajuste da Equacao 2.30;
nimero de vezes que todos os dados passam pela rede, denominado também como nimero de

época. Além disso, adotou-se a f, mostrada na Figura 2.9 e um v = 0, 001.
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3 Metodologia

3.1 Fluxo de trabalho

A metodologia empregada nesta monografia pode ser resumida pelo fluxo de trabalho,

representado na Figura 3.1.

Figura 3.1 — Fluxo de trabalho para treinamento e avaliagcdo de um modelo de machine learning

Obtencdo de
hiperparametros
dos modelos

Lddice Escolhado

exploragBo de CC Treinamento dos Teste e avaliacdo
dados algoritimo de ML

modelos dos modelos

Fonte: o autor

O fluxo apresentado na Figura 3.1, apesar de exclusivo para este trabalho, é encontrado de
maneira semelhante em trabalhos como o de Mitchell, Michalski e Carbonell (2013). As secdes

deste capitulo abordam cada uma das etapas apresentadas na Figura 3.1.

A implementacdo do desenvolvimento metodoldgico desta monografia e todos os resulta-

dos provenientes dela, podem ser encontrados em Bigoto (2020).

3.2 Geracao e exploracao dos dados

Como mencionado por Géron (2019), a maior parte do tempo em trabalhos de machine
learning é direcionada a preparacao dos dados. A integridade e qualidade dos dados sdo cruciais
para a obtencao de bons resultados em treinamentos de modelos de machine learning (MIT-
CHELL; MICHALSKI; CARBONELL, 2013). Assim, esta etapa da metodologia foi executada
de forma minuciosa e precisa, uma vez que a base de dados se mostra como elemento fundamental

do aprendizado de maquina.

A geragdo dos dados, empregados no desenvolvimento deste trabalho, foi inspirada na
metodologia usada por Hamidieh (2018). A ideia central por trds do artigo de Hamidieh (2018) é
a geracdo dos dados de supercondutores, a partir de suas formulas quimicas. A associa¢do destes
dados com a temperatura critica dos supercondutores, € usada para o treinamento de modelos de

machine learning, com base no aprendizado supervisionado.

As formulas quimicas e as temperaturas criticas dos supercondutores foram extraidas de

um banco de dados do Instituto Nacional de Ciéncia dos Materiais do Japao (NIMS). Este banco
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de dados pode ser facilmente acessado em National Institute for Materials Science (2020), apds

um simples cadastro.

Com as férmulas quimicas e as temperaturas extraidas de National Institute for Materials
Science (2020), foram calculados 81 caracteristicas. Essas caracteristicas foram calculadas a

partir das propriedades dos elementos, que compdem as formulas quimicas dos supercondutores.

As propriedades elementares envolvidas no processo de construgdo das caracteristicas
sdo: Massa Atdmica [u.m.a]; Primeira Energia de Ionizagdo [K J/mol]; Raio Atémico [pm];
Densidade [ K g/m?]; Afinidade Eletronica [ K J/mol]; Calor de Fusdo [ K .J/mol]; Condutividade
Térmica (C.T.) [W/(mK)]; Valéncia [sem unidades]. Os valores dessas propriedades para cada

elemento (4&tomo) foram obtidos de Mathematica (2020).

Para calcular as caracteristicas, foram estimados p e w, como sugerido por Hamidieh
(2018). O p representa a razao de determinado elemento, com relacdo a outros em uma férmula
quimica. J4 o w, neste caso, representa a fracao de determinada propriedade do elemento, em
relacdo a outros na férmula quimica. Além de p e w, estimou-se um coeficiente intermedidrio em
fun¢do desses, representado por f(p,w) neste trabalho. Para elucidar o procedimento, Hamidieh

(2018) utilizou um exemplo que € descrito no proximo paragrafo.

Para o supercondutor RegZr1, t representa qualquer uma das 8 propriedades elementares
apresentadas anteriormente. Para esse exemplo, supde-se que ¢ represente a condutividade térmica.
Assim, para o Rénio t; = 48W/(mK) e para o Zirconio ty = 23W/(mK). Dessa forma:

6 1
_ R 3.1
=511 ¢ T G-1)
Para w obtém-se:
ty 48 to 23
—_— = — == = —. 3.2
Tt T L T (3.2)
Em fungdo das equagdes 3.1 e 3.2, t€ém-se:
A=D1 9926 ¢ B= 22 _ o074 (3.3)
P1wi + paWs prw + Paws

Com base no que foi representado nas equacoes 3.1, 3.2 e 3.3, Hamidieh (2018) determi-

nou as caracteristicas baseando-se na Tabela 3.1.

Assim, como elucidado na Tabela 3.1, para cada uma das 8 propriedades elementares sao
estimadas: média; média ponderada; média geométrica; média geométrica ponderada; entropia;
entropia ponderada; intervalo da propriedade (A); intervalo ponderado; desvio padrao (o); desvio

padrdo ponderado.

Além das 80 caracteristicas que emergem do pardgrafo anterior, o nimero de elementos

em uma férmula quimica também € considerado uma caracteristica. Por fim, as 81 caracteristicas
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Tabela 3.1 — Resumo do procedimento utilizado para extracdo de caracteristicas a partir da
fomula quimica dos supercondutores. Apresentacao de valores para o RegZr

Feature & description Formula Sample value
Mean =p =04 + L2 355
Weighted mean =i = (;rl NES (p}lz) 44.43
Geometric mean =(51,)"? 33.23
Weighted geomeltric =(5Pi(1, )2 43.21
mean
Entropy =—w In{w ) —w,In(w;) 0.63
Weighted entropy =—Aln{A)-FIn(B) 0.26
Range =h—l3 (ty = 13) 25
Weighted range =ph—p,lz 3786
Standard deviation =[CL2X () + (12_“)1“1!1 12.5
Weighted standard =lp,(—v)* + py (1) 875

deviation

Fonte: Hamidieh (2018)

sao reunidas com a temperatura critica em uma base de dados, usada para treinar os modelos de
ML.

O processo de geragcao de dados, até o presente momento, pode ser resumido pela Figura
3.2. No contexto deste trabalho, elaborou-se um moédulo em Python direcionado a realizar de
maneira robusta o processo mostrado na Figura 3.2. Assim, foi possivel construir fungdes capazes

de tratar e fornecer dados para todas as etapas de desenvolvimento do projeto.

Figura 3.2 — Processo de geracdo da base de dados usada para treinamento de modelos de
machine learning neste trabalho

Geracdo de
base de dados

Extracdo do Determinagio
banco de dados de p, w e f(p,w)

do NIMS baseado em 8

(81
caracteristicas
calculadas + Tc)

(férmula propriedades
quimicaeT,) fisicas

Fonte: o autor

Na etapa de extracdo do banco de dados do NIMS, foi possivel a extracao de 33.244
amostras de medidas de supercondutores. Entretanto, elaborou-se no médulo mencionado uma
fungdo para validacao dessas amostras. A funcao foi desenvolvida para encontrar erros nas
férmulas quimicas dos supercondutores e possiveis incoeréncias fisicas (como identificacao de
elementos inexistentes ou temperaturas criticas invidveis). Assim, a fun¢ao eliminou: campos do
banco de dados ndo preenchidos; valores de temperaturas criticas absurdos (como 7, >> 200K);
férmulas quimicas que possuiam nimeros de elementos nao exatos (como Os,x ou O;_7z);

elementos ndo existentes (como Y 0).

Ap06s a execucdo da fungdo que verifica os dados do banco de dados do NIMS, restaram

21.539 amostras vdlidas de supercondutores. Dessa forma, elas puderam ser empregadas no
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processo de geragdo de caracteristicas.

O médulo construido, responsavel pelos dados, também possui uma fungao que € capaz de
traduzir uma férmula quimica de um supercondutor em algo interpretdvel. Basicamente, a fungdo
interpreta quais elementos estdo presentes em uma féormula quimica e quais suas proporg¢des.
Além disso, ela é responsavel por deixar todas as formulas quimicas em um tnico formato e

verificar possiveis erros de preenchimento.

Figura 3.3 — Esquematizacdo do médulo construido em Python para geracao dos dados explicados
nessa se¢ao

DEL [
limpos e

Dados do verificados

Mathematica:

propriedades

elementares

Tradugdo Caélculo dos

Médulo: A 81

. ‘ i
Gerenciador formulas e

de dados quimicas Tc

Dados do
NIMS: Fornece

dados
Férmulas para todos

quimicas e Tc os
processos

Fonte: o autor

Com a limpeza dos dados provenientes do banco de dados do NIMS e a possibilidade de
leitura das formulas quimicas de maneira tnica, foi possivel criar uma fun¢do que calcula p, w e
f(p,w) - representado por A e B na Equagdo 3.3 - para cada uma das 8 propriedades elementares.
Além de calcular esses termos, esta funcdo também calcula as caracteristicas elucidados na
Tabela 3.1 e as integra a caracteristica que representa o nimero de elementos, constituindo as 81
caracteristicas citadas. A saida desta funcdo entrega os dados necessarios para a construgao da

base de dados usada no treinamento dos modelos de ML.

O funcionamento deste médulo, feito para tratamento dos dados, pode ser esquematizado
pela Figura 3.3. A partir da leitura da figura, € possivel ver que o médulo em questdo recebe
os dados das propriedades elementares e dos supercondutores. Feito isso, 0o médulo € capaz de
limpar e verificar os dados de entrada, padronizar e possibilitar cdlculos com férmulas quimicas e

fornecer dados a diversas instancias deste trabalho. Além disso, através da traducdo das férmulas
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quimicas € possivel calcular diretamente as caracteristicas, que serdo usadas como dados de

treinamento para os modelos de ML.

Nesse contexto, € interessante citar o Pandas, uma biblioteca criada para a linguagem
Python, que visa manipular e analisar dados (IDRIS, 2014). No presente trabalho, o Pandas foi
amplamente usado para manipulacdo dos dados, seja na importagcdo ou exportacao em relacao
aos ambientes do Python. Além disso, ele foi muito empregado em fungdes e consultas as bases
de dados.

Além do Pandas, o Numpy também foi largamente explorado neste trabalho. Ele € uma
biblioteca do Python usada na computacgao cientifica, principalmente para cdlculos matriciais
multidimensionais (IDRIS, 2014). Ainda, o Numpy possui diversas fun¢des matemadticas prontas,

o que facilita a implementac¢do de modelos mateméticos no Python.

ApOs a geracao dos dados, realizou-se uma andlise sobre eles. A andlise teve o objetivo
de visualizar a distribui¢do dos dados e levantar indicios de correlacdo entre eles. A andlise
usufruiu de recursos graficos e estatisticos, e a correlacdo entre os dados foi estimada através do

Coeficiente de Correlagdo Pearson, apresentado na equacio abaixo (GERON, 2019):

Toy = > iy (=) (i — )
RS EEERY T

no qual n é o nimero de amostras, x; € y; sdo caracteristicas distintas e z = 1 Zﬂl x;, seguindo
n 1=

, (3.4)

0 mesmo caminho para .

Portanto, a metodologia proposta por Hamidieh (2018), simplificada pela Figura 3.2,
foi executada através da criagdo de um moédulo em Python. A esquematizacdo desse médulo é
representada pela Figura 3.3. Ademais, a base de dados gerada a partir do médulo descrito nessa

secdo, alimentou todos os modelos de ML explorados neste trabalho.

3.3 Escolha do algoritmo de ML

Como mostrado no Capitulo 2, modelos de regressao no aprendizado de maquina buscam
generalizar uma fungdo capaz de descrever o problema exposto pelos dados. Assim, eles tendem

a ajustar uma fun¢do genérica aos dados apresentados.

Para a tarefa de regressdo, utilizou-se nesta metodologia o aprendizado de maquina
fundamentado no aprendizado supervisionado. Salienta-se que o aprendizado supervisionado se

baseia em dados conhecidos (rotulados).

Para o treinamento do modelo, determinado supercondutor € representado pelas 81
caracteristicas, provenientes da sua formula quimica. As 81 caracteristicas sdo rotuladas pela
temperatura critica do supercondutor. Assim, os modelos de ML buscam generalizar uma fung¢ao

que associa as 81 caracteristicas a temperatura critica.
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Os algoritmos de machine learning, usados neste trabalho, foram: Regressdao Linear
Simples, Elastic Net, Mdquinas de Vetores de Suporte (SVM), Arvore de Decisdo, Floresta
de Arvores Aleatérias, Arvores Extremamentes Aleatérias, Gradient Boosting e Rede Neural

Perceptron Multicamadas (Rede Neural Profunda).

Os algoritmos do pardgrafo anterior estdo apresentados em ordem crescente de comple-
xibilidade e robustez. Eles foram implementados nesta ordem, pois ao passar por cada um, foi
possivel perceber a complexidade do problema em questio e a necessidade da implementagdo de

um algoritmo mais poderoso.

As implementacOes dos algoritmos Regressao Linear Simples, Elastic Net, Maquinas de
Vetores de Suporte, Arvore de Decisdo, Floresta de Arvores Aleatérias, Arvores Extremamentes
Aleatérias e Gradient Boosting foram feitas pelo Scikit-learn. O Scikit-learn € uma biblioteca
de cddigo aberto desenvolvida para aprendizado de maquina no Python (PEDREGOSA et al.,
2011). Ele é conhecido por sua fécil e flexivel utilizagcdo, além de fornecer uma vasta gama
de médulos tteis para utilizacdo no ambito do machine learning. Além disso, o Scikit-learn é
bastante usado em empresas como Spotify, J.P.Morgan, Booking.com, MARS, Inria e muitas
outras (SCIKIT-LEARN, 2020e).

Para implementar o algoritmo de Rede Neural Profunda, utilizou-se o TensorFlow - uma
biblioteca de cédigo aberto desenvolvida pelo Google para treinamento de modelos de machine
learning (GOOGLE BRAIN TEAM, 2020). O TensorFlow € extremamente recomendado para
treinamento de Redes Neurais, pois ele possibilita processamento paralelo em GPU. Ele € usado
por empresas como Coca-Cola, Google, Intel, Twitter e muitas outras (GOOGLE BRAIN TEAM,
2020).

Os algoritmos implementados pelo Scikit-learn foram processados em uma maquina fisica
- um notebook Dell Inspiron 3583 com 8 GB de memodria RAM, processador i7 8* geracao de 2
Ghz e sistema operacional Windows 10 64 bits. Além disso, estes algoritmos foram executados no
JupyterLab, uma plataforma que suporta a linguagem Python em uma interface web (JUPYTER,
2020).

A Rede Neural Profunda, sob o TensorFlow, foi implementada no Google Colab, um
ambiente virtual desenvolvido pelo Google para processamento de dados e treinamento de
modelos de ML em Python (GOOGLE COLAB, 2020). O ambiente € alocado em um servidor
virtual do Google, onde permite acesso a uma GPU, uma CPU e uma meméria RAM de 13 GB.

A GPU e CPU possuem velocidades variadas relativas a disponibilidade do servidor em questao.

3.4 Obtencao de hiperparametros dos modelos

Como ja mencionado, treinar determinado modelo de machine learning com todos os

dados provenientes da Secdo 3.2, poderia conduzir a um sobreajuste (overfitting). No qual o
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modelo treinado poderia apenas repetir os rétulos dos dados de treinamento.

Para evitar esta situacdo, ¢ comum segmentar a base de dados em um conjunto de
treino e outro de teste. Geralmente, o conjunto de treino corresponde a faixa de 70% a 80%
dos dados (GERON, 2019). Neste trabalho, os dados envolvidos no processo de treinamento
também correspondem a 80% da base de dados, assim, a maior parte dos dados € empregada

para treinamento do modelo. O conjunto de teste € usado para avaliar o resultado do treinamento.

Além de segmentar os dados em um conjunto de treino e outro de teste, € possivel também
controlar os hiperparametros dos modelos de ML. O processo de controle dos hiperparametros
dos modelos é chamado de regularizagio pela literatura (GERON, 2019). O pardgrafo a seguir

apresenta um exemplo, que mostra a relevincia do processo de regularizagao.

Uma arvore de decisdo, se ndo regularizada, pode crescer indefinidamente. Se ndo con-
trolada, ela pode se desenvolver ao ponto de se sobrepor aos dados de treino. Dessa maneira, a
regularizacdo se torna uma aliada para a generalizacdo, pois ela impde restricdes na construgao
do modelo. Nesta situac@o, pode-se controlar a profundidade da drvore, o nimero de amostras

em cada n6 ou até mesmo o nimero minimo de amostras necessdrias para crescer um novo no.

A Tabela 3.3 apresenta os hiperparametros empregados no processo de regularizacdo
em cada modelo. Vdrios hiperparametros foram avaliados em cada modelo, entretanto, os que
aparecem na Tabela 3.3 mostraram-se mais relevantes no processo de regularizacdo. A Tabela

3.3 também apresenta os valores dos hiperparametros avaliados no processo de regularizacao.

Como pode ser percebido pela Tabela 3.3, o processo de regularizacdo até o presente
momento, ndo mencionou o algoritmo usado no treinamento da Rede Neural Profunda; ele serd

mencionado mais adiante nesta secao.

O processo de validacdo cruzada € usado para determinacdo dos melhores hiperparametros
dos modelos apresentados na Tabela 3.3. A Figura 3.4 esquematiza o funcionamento do processo
de validagdo cruzada empregado nesta metodologia, para determinados hiperpardmetros de um
modelo de ML.

Analisando a Figura 3.4 é possivel perceber que todos os dados gerados através da Secao
3.2 sao divididos em conjunto de treino e teste, como mencionado no inicio dessa secdo. O
processo de validacdo cruzada busca manter integro o conjunto de teste, usando somente o

conjunto de treino para obten¢do dos melhores hiperparametros.

Além disso, o processo de valida¢do cruzada divide igualmente o conjunto de treino. No
caso representado pela Figura 3.4, o conjunto de treino € dividido em 5 partes iguais. Assim, no
processo de treinamento 4 partes sdo usadas para treinar o modelo e 1 parte para avalid-lo. Como
o conjunto de treino foi dividido em 5 partes, o processo de validacao cruzada busca repetir o

procedimento de treinamento 5 vezes, alternando a parte dos dados usada para validacao.

Para cada conjunto de dados treinado no processo de validagdo cruzada € gerada uma
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Figura 3.4 — Esquematizacdo do processo de validag¢ao cruzada usado neste trabalho

Base de dados

Dados de treino Dados de teste

Fold1l || Fold2 | Fold3 | Fold4a || Fold5 |\

Divisio1 | Fold1 || Fold2 || Fold3 || Folda || Fold5

Divisdo2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Determinagéo dos
: ' melhores
Divisio3 | Fold1 | Fold2  Fold3  Fold4 | Fold5 hiperparémetros

Divisdo 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Divisso5 | Fold1 | Fold2 | Fold3 || Foid4 | Folds  J

Avaliag&o final { Dados de teste

Fonte: Adaptado de Scikit-learn (2020a)

medida de desempenho. Assim, € possivel determinar o desempenho médio do modelo em relagao
a um conjunto de hiperpardmetros. Apés a medida de desempenho para determinados valores de
hiperpardmetros, outra combinacao de hiperparametros passa pelo processo de validacio cruzada.
A combinacdo com o melhor desempenho carrega os hiperparametros adequados para treinar
determinado modelo de ML. Neste trabalho, a medida de desempenho envolvida no processo de
valida¢io cruzada é o R?.

Por fim, o conjunto de teste pode ser usado para avaliar o resultado final do treinamento
do modelo de ML, que incorpora os melhores hiperparametros. Para este trabalho, o conjunto de
treinamento também foi dividido em 5 partes no processo de validag@o cruzada, ao avaliar cada

combinacao de hiperparametros dos modelos da Tabela 3.3.

A Figura 3.5 apresenta o procedimento total empregado na avaliacdo dos modelos de MLL
neste trabalho. No procedimento, a validacdo cruzada encontra os melhores hiperparametros e
eles sdo usados para treinar o modelo de ML com todos os dados de treino. Feito isso, o conjunto

de teste € empregado para avaliacdo final do modelo de machine learning.

Assim como na Se¢do 3.2, um médulo em Python foi criado para executar o procedimento
apresentado na Figura 3.5. Basicamente, esse médulo é composto por duas funcdes, uma é
responsavel por receber os dados gerados pelo procedimento descrito na Se¢do 3.2 e distribui-los
aleatoriamente em um conjunto de treino e outro de teste. A distribuicdo aleatdria foi empregada
no intuito de homogeneizar a distribuicao dos dados nos conjuntos, de forma que eles pudessem

ter a mesma representatividade sobre o problema.
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Figura 3.5 — Procedimento usado para treinamento e avaliagao dos modelos de MLL

Hiperparametros Base de dados

Validagao Cruzada Dados de treino Dados de teste

Melhores Retreinando o
Hiperparametros modelo

Avaliagao final

Fonte: Adaptado de Scikit-learn (2020a)

A outra func¢do foi construida para testar todos os hiperpardmetros indicados na Tabela
3.3. Dessa forma, a fungdo faz com que todos eles sejam submetidos ao processo de validacao
cruzada (Figura 3.4). Apds testar todas as possibilidades de combinac@o dos hiperparametros
perante determinado modelo, esta fun¢do indica os melhores hiperpardmetros com base no R2.
A melhor combinacdo dos hiperparametros € usada para treinar o modelo efetivamente, como ja

mencionado. A Figura 3.6 resume o funcionamento do médulo em questao.

Além de garantir a aleatoriedade na distribuicao dos dados e arquitetar o processo de va-
lidagdo cruzada, o médulo ilustrado na Figura 3.6 permiti controlar o consumo de processamento
da CPU. Para este trabalho, configurou-se que todos os nicleos do processador, exceto dois deles,
fossem usados nas tarefas de obtencao de hiperparametos. Esta configuracdo foi necessdria, pois
ao permitir o processamento em todas unidade 16gicas, a maquina fisica - mencionada na Secdo

3.3 - se sobrecarregava.

A obten¢ao de hiperparametros para a Rede Neural Profunda exige uma abordagem
diferente. Treinar algoritmos de Redes Neurais demanda muito processamento e tempo. Dessa
forma, € invidvel submeter este modelo de aprendizado de mdquina a verificacao de diversos
valores de hiperparametros. Além disso, ndo hd embasamento tedrico estabelecido para arquitetar
o sistema (hiperparametros) da Rede Neural (SILVA; SPATTI; FLAUZINO, 2010).
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Figura 3.6 — Esquematizacdo do médulo construido para dividir os dados e encontrar os melhores
hiperparametros

Melhor
combinacao

Hiperpara- de
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Base de 80% dados

dados de treino;

gerada na 20% dados
Secao 3.2 de teste

Fonte: o autor

Apesar de ndo existir um procedimento consolidado para definicao de hiperparametros,
ha preceitos para fazer com que o sistema da Rede Neural trabalhe melhor, evitando sobreajuste
nos dados. Para este trabalho, os hiperpardmetros analisados sdo: nimero de camadas ocultas da
rede; nimero de neurdnios em cada camada; nimero de etapas de treinamento; quantidade de

dados usada para ajuste da rede em cada etapa.

Sabe-se, por Géron (2019), que apenas uma camada oculta pode modelar fun¢des comple-
Xas, se possuir um numero adequado de neur6nios. Por outro lado, Géron (2019) afirma que redes
com mais de uma camada possuem eficiéncia de parametros - capacidade de modelar fun¢des
complexas com menos neurdnios e mais velocidade. E comum o uso de duas camadas ocultas;
muitas camadas podem conduzir ao sobreajuste nos dados (SILVA; SPATTI; FLAUZINO, 2010).

Tabela 3.2 — Hiperparametros e seus valores analisados para o modelo de Rede Neural Profunda

Modelo Hiperparametros \ Valores Analisados
Numero de camadas ocultas da rede 1,2,3
Numero de neurdnios em cada camada 162, 81, 41, 21, 11
Rede Neural Profunda Niimero de etapas de treinamento Parada antecipada em
(Multi-Modal Perception) cada caso
Quantidade de dados usada para ajuste 32,64, 128

da rede em cada etapa

Fonte: o autor

O ndmero de neurdnios na entrada e saida da rede € determinado pela necessidade da tarefa
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(MITCHELL; MICHALSKI; CARBONELL, 2013). Neste trabalho, a entrada é composta por 81
neurdnios, nimero de caracteristicas da base de dados. A saida é composta por um neurdnio, que
entrega o valor da temperatura critica prevista pela rede. Para os neurdnios das camadas ocultas,

é comum dimensiona-los para a formacio de um funil - cada vez menos neurdnios (GERON,
2019).

A Tabela 3.2 apresenta os valores de hiperparametros testados neste trabalho para a
Rede Neural. Para o hiperparametro que representa o nimero de etapas de treinamento, foi
implementada uma parada antecipada. Essa parada representa o ponto, no qual o modelo para de
reduzir significantemente o erro sobre as predi¢des de 7. Além disso, a parada evita o inicio do
sobreajuste nos dados.

A quantidade de dados usada para ajuste da rede em cada etapa, foi testada para os valores
32, 64 e 128. Esses nimeros representam a quantidade de dados que passam pela rede, antes
do otimizador realizar ajustes nos pesos relacionados aos neurdnios (Equagdo 2.30). Poderiam
ser utilizados nimeros maiores, entretanto, o aumento no valor desse hiperparametro nao apre-
sentou melhoria nas predicdes. Além disso, o0 menor valor nesse hiperparametro indica maior

aproveitamento do conjunto de treino.

O otimizador Adam ¢ utilizado neste contexto, para reduzir o M S E em cada etapa. Além
disso, a funcao de ativacdo em cada neurdnio € a ReLU, por apresentar rapidez no célculo do
gradiente do otimizador (GERON, 2019).

O conjunto de treino, que sai do mddulo apresentado na Figura 3.6, € usado para o
processo de obtencao dos melhores hiperparametros da Rede Neural. Dentro deste conjunto, 20%

dos dados s@o usados para validar o processo de aprendizagem.

Apesar da validacdo cruzada ndo ser utilizada para obter os melhores hiperparametros
da Rede Neural, o processo apresentado na Figura 3.5 também pode ser empregado para ex-
plicar o ciclo de treinamento da Rede Neural. Entretanto, o que indica o melhor conjunto de

hiperparametros é o R% e 0 RM SFE de cada situagdo apresentada na Tabela 3.2.
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Tabela 3.3 — Hiperparametros e seus valores analisados em cada modelo de ML

Modelo
Regressao Simples

Hiperparametros
Normalizacao dos dados

Valores Analisados
True ou False

Elastic-Net

Coefiente Ridge

0.00001, 0.00001, 0.001,

0.01,0.1, 1, 10
Taxa de mistura 0,0.01,0.1,0.5, 1
Grau 2,3,4,5
SVM Polinomial C 1, 10, 100, 250, 500
€ 0.01,0.1, 1, 10
1, 10, 100, 250, 500,
SVM RBF C 1000, 1500
€ 0.01,0.1, 1, 10
SVM Linear C 0.01, 0.1, 1, 10, 50

€

0.01, 0.1, 1, 10, 50

Arvore de Decisao

Profundidade da arvore

10, 20, 30, 40, 50, 60, 64,
65, 66, 67, 68,70

n° minimo de amostras em um nd

1,2,3,4,5,6,7

n° minimo de amostras para dividir um n6

1,3,5,7,9,10,11,12,13,14

Floresta Aleatoria

n° de arvores

100, 200, 300, 400, 500,
600, 700, 800, 850

Profundidade das arvores

10, 20, 30, 40, 50, 60

n° minimo de amostras em um no

1,2,3,4,5,6,7

n® minimo de amostras para dividir um n6

1,3,5,7,9,10,11,12,13,14

n° de arvores

100, 200, 300, 400, 450,

475, 500, 600
Profundidade das arvores 10, 20, 30, 40, 50, 60
Arvores Extl,‘efnamente n® minimo de amostras em um né 1,2,3,4,5,6,7
Aleatoérias
n® minimo de amostras para dividir um né 1,3,5,7.9,10,11,
12,13,14
1° de Arvores 100, 150, 200, 300,
400, 500
Profundidade das arvores 10, 20, 30, 40, 50, 60
Gradient Boosting n°® minimo de amostras em um noé 1,2,3,4,5,6,7
n° minimo de amostras para dividir um né 1,2,3,4,5,6,7

Taxa de aprendizado

0.001, 0.01, 0.1, 0.5

Fonte: o autor

3.5 Treinamento dos modelos

Nesta metodologia, o conceito de treinamento ja foi apresentado na sec¢do anterior. Para

obten¢do dos melhores hiperparametros, € necessario treinar os modelos com todas as combina-

coes de hiperpardmetros. A melhor combinacdo, a que apresenta o melhor desempenho, é usada

para treinar de fato o modelo de ML. Como jé discutido, a Figura 3.5 apresenta o fluxo total de

treinamento de determinado modelo.




Capitulo 3. Metodologia 39

Com os dados que emergem do médulo representado pela Figura 3.6, o modelo € treinado
utilizando o conjunto de treino (80 % dos dados da base). Apds o treinamento com os melhores
hiperparametros, o conjunto de teste € usado para validar o treinamento e determinar a eficiéncia

do modelo.

E nesta etapa da metodologia, que o modelo de ML escolhido busca reconhecer determi-
nados tipos de padrdes nos dados de treino (MICROSOFT, 2020). Assim, esta secdo se dedica a
descrever o processo de fornecer determinado algoritmo, que com base nos dados vai ajustar o

modelo de machine learning.

O processo utilizado neste trabalho para implementar (treinar) um modelo de ML em
Python, seja usando o Scikit-learn ou o Tensorflow, ¢ meramente ilustrado pela Figura 3.7.
Analisando a figura, pode-se perceber que a primeira etapa consiste no instanciamento do modelo.

O modelo aqui é evocado como uma classe da biblioteca (Scikit-learn ou Tensorflow).

Figura 3.7 — Etapas para implementar o processo de treinamendo dos modelos de ML em Python

Fornecer os dados ao

Fornecer os argumentos

Instanciar o modelo ; p g
{hiperparametros)

Utilizar o método fit{)

método

Fonte: o autor

No Tensorflow, antes de chamar o algoritmo do modelo (instanciar a classe), foi necessario
criar a arquitetura do sistema da Rede Neural Profunda a ser avaliado. Dessa maneira, foi preciso
criar uma classe especificando as camadas e os neordnios por camada. A criacdo foi intermediada
pelo Keras, uma API de alto nivel feita para redes neurais, que € executada como front-end no
TensorFlow (KERAS SPECIAL INTEREST GROUP, 2020).

O segundo passo elucidado na Figura 3.7, representa 0 momento no qual os melhores
hiperparametros sao inseridos no modelo instanciado. Os hiperparametros alimentam os médulos,
que constituem o algoritmo do modelo de ML. Apds alimentar os algoritmos, o método fit €
usado para treinar o modelo de machine learning. Esse método apresenta os dados de treinamento

ao algoritmo.

Para o modelo Mdquinas de Vetores de Suporte, as 81 caracteristicas foram normalizadas
como sugerido em Scikit-learn (2020f). A normalizacao se deve ao fato dos algoritmos das
Midquinas de Vetores de Suporte ndo serem invaridveis a escala. A normalizacdo foi feita a partir
da equacao a serguir:

z=(x—p)/o (3.5)
no qual x representa o valor de uma caracteristica, 1+ a média das amostras de treinamento e o 0

desvio padrao das amostras de treinamento.
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O modelo de Rede Neural Profunda foi normalizado pelo mesmo motivo das Maquinas

de Vetores de Suporte, usando a Equacgao 3.5.

3.6 Teste e avaliacao dos modelos

Esta secdo aborda a metodologia utilizada para avaliar o processo de treinamento descrito
até a secao anterior. Com os modelos treinados, foi possivel utiliz-los para realizar previsoes.
Estas previsoes foram feitas utilizando o método predict, que funciona de maneira semelhante ao
método fit. Ao passar dados de determinado supercondutor ao método predict, ele foi capaz de

prever a temperatura critica do mesmo, com base no modelo treinado.

Para avaliar os modelos treinados, foram estimados o R? e o RM S E, como mencionado
no Capitulo 2. Para estimd-los, comparam-se os valores das temperaturas criticas provenientes

do NIMS, com as temperaturas criticas estimadas pelos modelos de ML.

Nesta monografia, o R? e o RM SE foram estimados para o conjunto de treino e para o
conjunto de teste, que emergiram do mddulo representado pela Figura 3.6. A estimativa sobre o
conjunto de treino, revela a efici€éncia dos modelos na previsao de temperaturas criticas, usando

dados j4 apresentados a eles.

No conjunto de teste, o R? e o0 RMSF sio obtidos sobre dados inéditos aos modelos de
machine learning. Nessa perspectiva, a apuracdo da eficiéncia dos modelos sobre os dados de
teste foi a mais importante, pois representa a capacidade do modelo em prever a temperatura

critica de supercondutores nunca treinados.

Para cada modelo de ML treinado foi construido um gréfico, que apresenta em um eixo a
temperatura critica proveniente do NIMS e em outro a temperatura critica prevista pelo modelo.
Além da plotagem das temperaturas previstas pelos modelos no grafico, uma reta representando
R? = 1 foi incorporada a ele. Deve-se mencioanar que os gréficos sdo construidos a partir das

previsoes feitas com o conjunto de teste.

Para os melhores modelos - aqueles que apresentaram menor erro (menor RMSFE) e
maior assertividade (R? mais préximo de 1) - realizou-se uma andlise sobre as previsdes em
diferentes faixas de temperaturas. Além disso, eles foram utilizados para estimar a temperatura
critica de alguns supercondutores, que aparecem em artigos do Departamento de Engenharia de
Materiais da EEL - USP. Esta estimativa permite comparar as temperaturas criticas estimadas

pelos modelos, com as temperaturas criticas que aparecem nos artigos.

Como resultado desta metodologia, para cada modelo de machine learning sao apresen-
tados os melhores hiperpardmetros obtidos, o0 k% e 0 RM SE para os conjuntos de treino e teste,
e o gréafico de temperatura critica proveniente do NIMS versus a temperatura critica prevista
pelo modelo. Ainda, para os melhores modelos sdo apresentados os resultados decorrentes ao

parédgrafo anterior.
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4 Resultados

4.1 Apresentacao dos dados

A Tabela 4.1 apresenta um resumo estatistico das temperaturas criticas usadas neste

trabalho. Os resultados apresentados na tabela em questdo, sdo provenientes da base de dados
descrita na Secdo 3.2.

Tabela 4.1 — Resumo estatistico dos dados de temperatura critica
Contagem  M¢édia

21539 34,12K | 34,19K | 0,00021 K | 5,24 K 19,7K 62 K 185 K

Fonte: o autor

Figura 4.1 — Distribuicao das temperaturas criticas representadas pela Tabela 4.1
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Fonte: o autor

Através da Tabela 4.1, é possivel ver que neste trabalho foram utilizadas 21539 medidas
de temperaturas criticas de supercondutores. A média dessas temperaturas € de 34,12 K e desvio

padrdo de 34,19 K. A menor temperatura critica avaliada neste trabalho foi de 2,1.10™* K e a
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maior foi de 185 K. Os valores do primeiro, segundo e terceiro quartil sdo, respectivamente, 5,24
K, 19,7K e 62 K.

A Figura 4.1 apresenta o resultado de uma funcao de distribuicdo para os dados de
temperatura critica. Na figura, € possivel ver a concentracdo dos dados de temperatura critica em
diferentes faixas de temperaturas. Na Figura 4.2, pode-se observar a quantidade de amostras de
supercondutores ao longo do eixo da temperatura critica. Constata-se uma maior concentracao

de supercondutores em baixas temperaturas, como previa o primeiro quartil da Tabela 4.1.

A Figura 4.3 representa a fun¢ao de distribuicdo para o conjunto de teste, que emerge
do médulo descrito pela Figura 3.6. Espera-se que o conjunto de teste represente uma curva
de distribui¢do de dados correlata a apresentada na Figura 4.1. Salienta-se que o conjunto de
teste € usado para avaliar o resultado final dos modelos, dessa forma, ele deve conter dados

representando todas as faixas de temperaturas.

Figura 4.2 — Numero de supercondutores em diferentes faixas de temperaturas criticas
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Fonte: o autor

O Coeficientede de Correlacdo Pearson, elucidado na Equacao 3.4, foi calculado para
todos as caracteristicas em relagc@o a temperatura critica. Os coeficientes mais expressivos sao

apresentados na Figura 4.4.

Como pode ser observado na Figura 4.4, as caracteristicas com maior correlacio estao re-
lacionadas a massa atOmica, afinidade eletrOnica, raio atobmico, condutividade térmica e valéncia.

Literaturas como as de Géron (2019) e Bishop (2006) levantam que caracteristicas fortemente
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Figura 4.3 — Distribui¢do dos dados do conjunto de teste
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Figura 4.4 — Principais coeficientes de correlagdo das caracteristicas em relagdo a temperatura
critica
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correlacionadas costumam contribuir mais com o ganho de informagdes, no processo de treina-
mento dos modelos de machine learning. A Figura 4.5 exibe a distribuicdo e o relacionamento

das caracteristicas mostradas na Figura 4.4 e da temperatura critica.

Figura 4.5 — Gréficos das caracteristicas com maiores coeficientes de correlacdo da Figura 4.4
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Como muitas caracteristicas foram calculadas na Se¢ao 3.2, o sistema avaliado pelos mo-

delos de ML possuia 81 dimensdes (81 caracteristicas calculadas). E uma pratica comum avaliar
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os resultados da reducdo de dimensionalidade nos dados. Dessa forma, as 81 caracteristicas usadas

para estimar a temperatura critica foram sujeitas ao processo de redu¢do de dimensionalidade.

O processo da redugdo se baseou na projecdo das 81 caracteristicas em dimensdes
inferiores, de forma a garantir a variancia nos dados (GERON, 2019). O algoritmo PCA (Andlise
dos Componentes Principais) da biblioteca Scikit-learn foi empregado no processo de reducao
de dimensionalidade, por possuir eficiéncia na identificacdo do hiperplano - usado na projecao -
mais préximo aos dados (GERON, 2019).

A Figura 4.6 apresenta a variancia dos dados em relacdo a dimensdo da projecao. Como
pode ser visto, a variancia dos dados € preservada mesmo em baixas dimensdes. Uma projecao
em 6 dimensdes preserva uma variancia de 99,9%. Os dados com redugdes de dimensionalidade
foram submetidos aos processos de treinamento. Nenhuma dimensao reduzida apresentou bom
resultado no treinamento dos modelos. No modelo de regressao linear multipla, por exemplo, o

R? chega a cair 50%, quando a variincia € preservada em 99,9%.

Figura 4.6 — Preservacao da variancia dos dados com mudanca na dimensao
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4.2 Regressao linear multipla

Para a regressao linear multipla avaliou-se a normaliza¢do dos dados. Entretanto, a
normalizag¢@o nao mostrou melhoria nos resultados do modelo. Este modelo de regressao linear
mostrou 12 de 0,73 e RM SE de 17,66 K para os dados usados no treinamento. Para o conjunto
de teste, o modelo apresentou R? de 0,75 ¢ RM SE de 17,03 K. Para os dados normalizados, o

modelo obteve exatamente o mesmo resultado.

A Figura 4.7 mostra a temperatura critica prevista pelo modelo versus a temperatura critica
obtida do NIMS. Os dados usados na construcdo da Figura 4.7 sdo provenientes do conjunto de
teste, com dados nunca vistos pelo modelo. A Curva Ideal, representada no gréfico, refere-se a

situagfio na qual o RR? seria 1, ou seja, quando o modelo prediz 7. com assertividade de 100%.

Figura 4.7 — T, prevista versus 1, observada para o modelo de regressdo linear multipla, com
R*de 0,75e¢ RMSE de 17,03 K
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Fonte: o autor

Como € possivel ver na Figura 4.7, o modelo em questdo prediz para alguns supercondu-
tores, temperaturas criticas menores que 0 K. Esta predi¢ao € extremamente inapropriada, pois

configura uma incoeréncia fisica. O modelo de regressdo linear multipla € utilizado geralmente
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como referéncia para outros modelos de regressao (HAMIDIEH, 2018).

4.3 Regressao Elastic-Net

Os melhores hiperparametros encontrados pelo processo de validag¢do cruzada para a
regressao Elastic-Net foram oo = 0.0001 e p igual a zero. O hiperparametro p sendo zero, indica
que o modelo Elastic-Net se equivalha ao modelo de regressao de Ridge. Com o hiperparametro

« sendo pequeno, implica que o modelo tendeu a regularizar pouco os coeficientes da regressao
linear.

O R? e 0 RM SE para o conjunto de dados de treino foram de 0,73 e 17,74 K. Para o
conjunto de teste, essas medidas de desempenho foram de 0,75 e 17,15 K, respectivamente. Como
pode ser percebido, a tentativa de regularizar melhor o modelo de regressao linear multipla com

o modelo Elastic-Net nao foi satisfatéria, uma vez que nao houve melhora nos indicadores de
desempenho.

A Figura 4.8 apresenta o grafico de T, prevista versus T, observada para o modelo de

regressao Elastic-Net, perante o conjunto de teste.

Figura 4.8 — T, prevista versus T, observada para o modelo de regressdo Elastic-Net, com R? de
0,75e RMSE de 17,15 K
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Fonte: o autor

Como pode ser visto na Figura 4.8, o problema de predi¢do abaixo de 0 K permanece.
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4.4 Maquinas de Vetores de Suporte (SVM)

Para as SVM foram utilizados trés fun¢des de Kernel voltadas a tarefa de regressao.
Foram utilizados o Kernel Linear, Polinomial e o RBF Gaussiano.

4.4.1 Kernel Linear

Os melhores hiperparametros para o Kernel Linear foram C' = 100 e ¢ = 10. O valor de
C' e € para este caso, se mostra um pouco elevado perante aos indicados por Scikit-learn (2020f)
e Géron (2019). Este fato conduz a conclusdo que para o modelo obter melhores pontuagdes para

R? e RM SE, ele se manteve menos regularizado.

O R’eo0 RMSE do conjunto de treino para o Kernel Linear foram 0,73 e 17,84 K,
respectivamente. No conjunto de teste, o modelo obteve 0,75 para o k% e 17,21 K parao RM SE.

A Figura 4.9, mostra o gréfico das predicdes versus a temperatura critica observada.

Figura 4.9 — T, prevista versus T, observada para o modelo SVM Linear, com R? de 0,75 e
RMSFE de 17,21 K
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4.4.2 Kernel Polinomial

Os resultados apresentados acima ndo mostraram ganhos nas medidas de desempenho.
Assim, uma abordagem polinomial foi elaborada e implementada através das SVM. Como a
dimensionalidade do problema envolvido neste trabalho € grande, uma abordagem polinomial
demandaria muito processamento e memoria RAM, o que a tornaria invidvel. As SVM permitem
implementar uma abordagem polinomial sem calcular a combinacao de todas as caracteristicas

envolvidas no processo. Elas usam um artificio matemético conhecido como truque de Kernel
(GERON, 2019).

Os melhores hiperparametros do modelo, encontrados pelo método da validagdo cruzada,
foram C' = 500, € = 1 e grau do polindmio igual a 2. Por mais que o hiperparametro C' pareca
elevado, o modelo ndo mostrou sobreajuste nos dados, pois o R? foi igual para o modelo de treino
e teste. O modelo apresentou 12 igual a 0,82 ¢ RM SFE igual a 14,52 K para o conjunto de treino
e 14,46 K para o conjunto de teste.

Figura 4.10 — T, prevista versus T, observada para o modelo SVM Polinomial, com R? de 0,82
e RMSE de 14,46 K
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A Figura 4.10 mostra o gréafico 7. previsto versus T, esperado para o conjunto de teste.

Como pode ser observado, a abordagem polinomial melhorou as medidas de desempenho de
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R? e RMSE. Além disso, na Figura 4.10 é possivel encontrar uma melhor distribui¢do das
temperaturas criticas ao longo da Curval Ideal.

Até o presente momento, nenhum modelo conseguiu generalizar bem a predicdo de 7,
em baixas temperaturas. E possivel ver nos graficos de 7, prevista versus T observada, que os
modelos predizem algumas temperaturas abaixo de 0 K, o que € uma incoeréncia fisica, como
ja mencionado. Apesar disso, o ganho no desempenho apresentado nesta subsecao conduziu a

investigacao do modelo de SVM para o Kernel RBF Gaussiano.

4.4.3 Kernel RBF Gaussiano

Para o Kernel RBF Gaussiano, os melhores valores encontrados para os hiperparametros
foram C' = 1000 e ¢ = 10. Com base nos hiperpardmetros C' e ¢, espera-se que este modelo
esteja menos regularizado do que os demais apresentados. Entretanto, ao observar as medidas

de desempenho para este modelo, contata-se que nao houve sobreajuste significativo nos dados
treino.

Figura 4.11 — T, prevista versus T, observada para o modelo SVM RBF, com R? de 0,87 e
RMSE de 12,35 K
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O R? e 0 RM SE para os dados de treino foram respectivamente, 0,88 e 11,81 K. Para os
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dados de teste, o R? ficou em 0,87 e 0 RM SE em 12,35 K. A Figura 4.11 apresenta o resultado

de T'c prevista versus 1, observada.

E possivel ver na Figura 4.11, que mesmo melhorando bastante as medidas de desem-
penho R? e RMSE, o problema da temperatura ser estimada abaixo de zero Kelvin ndo foi
contornado. Por apresentar bons resultados para R* e RM SE, é apresentada na Figura 4.12
uma andlise sobre a predi¢dao de temperaturas criticas em diferentes faixas de temperaturas. A
andlise destaca nas faixas de temperaturas, as amostras do conjunto de teste que tiveram desvio

(|Teprevista — T.real| /T.real) menor que 10% no processo de predigdo.

Figura 4.12 — O grafico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predi¢ao da temperatura
critica pelo Kernel RBF
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A partir da Figura 4.12 fica evidenciado que o modelo obtém seu pior resultado para as
temperaturas criticas entre O e 10 K. Nessa faixa de temperatura estd a maior parte das amostras
do conjunto de teste e apenas 5,6% delas obtiveram desvios inferiores a 10%. Nessa perspectiva,
o modelo descreve melhor as temperaturas que estdo entre 130 e 140 K. Para esta dltima faixa de

temperatura, o modelo previu 78,6% das temperaturas criticas com desvio menor que 10%.

4.5 Arvore de Decisio

Para o modelo Arvore de Decisdo os melhores hiperparametros foram: profundidade
maxima da arvore igual a 67; minimo de 13 amostras para que um né possa se dividir; minimo

de 6 amostras que um n6 da folha deve possuir.
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Com os hiperparAmetros apresentados, o modelo obteve para o conjunto de treino um >
de 0,96 e um RM SE de 7,15 K. Para o conjunto de teste, o R? ficou em 0,90 e 0 RM SE em
11,04 K. A Figura 4.13 apresenta o grafico de 7. prevista versus T, observada.

Figura 4.13 — T, prevista versus T, observada para o modelo Arvore de Decisdo, com R? de
0,90e RMSE de 11,04 K
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Observa-se que a arvore de decisdo conseguiu aproximar as predi¢des a Curva Ideal. Além
disso, este modelo de ML conseguiu eliminar o problema das temperaturas criticas negativas.
Ademais, o modelo Arvore de Decisdo apresentou um ganho significativo nas medidas de

desempenho, em relacdo aos modelos apresentados até 0 momento.

O modelo Arvore de Decisao descreveu significantemente bem os dados de treino, como
pode ser visto nas estimativas de R?> e RMSE. Apesar disso, o modelo conseguiu atingir
resultados satisfatérios com os dados de teste, dados nunca vistos por ele. Assim, pode-se

concluir que o modelo generalizou bem o problema apresentado.

Assim como apresentado na Figura 4.12 para o Kernel RBF, a Figura 4.14 apresenta
uma anélise sobre a predicdio de 7. pelo modelo Arvore de Decisdo, em diferentes faixas de

temperaturas.



Capitulo 4. Resultados 53

Figura 4.14 — O grafico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predicdo de temperatura
critica pelo modelo Arvore de Decisdo
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Como pode ser observado na Figura 4.14, a predicdo na faixa de temperatura de O a
10 K melhorou em relagdo a ilustrada na Figura 4.12. Nesta faixa, o modelo conseguiu prever
26,4% das temperaturas criticas com um desvio menor que 10%. Usando este desvio de 10%
como parametro, o modelo melhor prediz temperaturas na faixa de 100 a 110 K e pior prediz

temperaturas na faixa de 40 a 50 K.

Deve-se salientar, que a andlise de desvio de 10% na predicdo de 7, em diferentes faixas
de temperatura € referente aos dados de teste e que o espago amostral empregado aqui, possui o

intuito de comparacdo entre os modelos adotados nesta monografia.

O modelo Arvore de Decisdo, bem como modelos que o utilizam, permite calcular o ganho
de informacdo que cada caracteristica possui. Assim, cada caracteristica usada no treinamento
recebe uma pontuacio, que representa o quanto ela € importante na obtencao dos resultados. A
Figura 4.15 mostra as cinco caracteristicas que obtiveram maior ganho de informacao. O célculo
de ganho de informacgdo por cada caracteristica foi obtido pelo atributo feature_importances_

das classes dos modelos.

As duas caracteristicas estatisticas que mais contribuiram para o ganho de informacao
estdo relacionadas a condutividade térmica, como mostrado na Figura 4.15. Apesar da Figura 4.15
apresentar somente as cinco principais caracteristicas, o modelo calcula o ganho de informagao

para as 81 caracteristicas envolvidas.
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Figura 4.15 — Caracteristicas que mais contribuem com o ganho de informacao no modelo Arvore
de Decisao
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Fonte: o autor

Ordenando as caracteristicas em ordem decrescente de ganho de informagao, € possivel
plotar a evolugdo das métricas R* e RM SFE perante o niimero de caracteristicas usadas para
treinar o modelo. A Figura 4.16 apresenta no eixo vertical direito valores para R? € no eixo
vertical esquerdo valores para RM S E, perante o nimero de caracteristicas utilizados para treinar

o modelo. Os valores plotados na Figura 4.16 sdo referentes aos dados do conjunto de teste.

A Figura 4.16 mostra que as melhores caracteristicas - as que obtiveram maiores pontua-
¢des no ganho de informacio - contribuiram mais para os resultados de R? e RM SE. Assim,
utilizar as principais caracteristicas ou todas as 81 caracteristicas, conduz a resultados similares
em relagiio ao R? e RM SE.

Como o modelo apresentou uma maior coeréncia perante o problema proposto, ele foi
utilizado para predizer algumas temperaturas criticas, que aparecem em artigos publicados pelo
Departamento de Engenharia de Materiais, da Escola de Engenharia de Lorena (EEL - USP).
Para esta tarefa, os seguintes supercondutores foram utilizados: Ti,GeC'; H fVoGay; NiTes;
TioInCy NbaSnC'; Zro.96Vo.04B2; NbsGes; ZrsPtsCy 3.

O Ti5GeC apresentou supercondutividade a 9,5 K por Bortolozo et al. (2012a). Segundo
Ferreira et al. (2018), H fV>Gay apresenta comportamento supercondutor a 4,1 K. A T, de 4,0 K
para o NiT'e; aparece em Lima et al. (2018), quando dopado com 7':. Bortolozo et al. (2007)
apresenta a temperatura critica do T, /nC' em 3,1 K. Para o Nb,SnC, Bortolozo et al. (2006)

indica uma 7. de 7,8 K. Renosto et al. (2013) apresenta uma temperatura critica de 8,7 K para
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Figura 4.16 — Evolugio de R* e RM SE diante do niimero de caracteristicas utilizadas para
treinar o modelo Arvore de Decisdo
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0 Z10.96V0.04B2. Para o NbsGes, a temperatura critica € 15,3 K de acordo com Bortolozo et al.
(2012b). Por fim, Renosto et al. (2018) apresenta uma 7. de 7 K para o Zr; Pt3C) 3.

Tabela 4.2 — Comparacio das temperaturas criticas estimadas pelo modelo Arvore de Decisdo
com as encontradas na literatura

Supercondutor T. Estimada T, Literatura |

TiyGeC (BORTOLOZO et al., 2012a) 13,2 K 9,5K
H fVyGay (FERREIRA et al., 2018) 10,8 K 4,1 K
Ti — NiTey (LIMA et al., 2018) 1, 7K 4,0 K
TioInC (BORTOLOZO et al., 2007) 30K 3,1K
NbySnC (BORTOLOZO et al., 2006) 6,3 K 7,8 K
Z710.96Vo.0aB2 (RENOSTO et al., 2013) 82K 8, 7K
NbsGes (BORTOLOZO et al., 2012b) 23K 15,3K
ZrsPt3Cy 3 (RENOSTO et al., 2018) 7,0K 7,0 K

Fonte: o autor

A Tabela 4.2 apresenta os valores das temperaturas criticas estimadas pelo modelo e as
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temperaturas criticas encontradas nos artigos citados acima. Analisando a tabela, € possivel ver
que o modelo pode predizer bem as temperaturas criticas do Tio InC, Zrg.96Vp.04 B2 € Z15 Pt3Cy 3.
As temperaturas criticas estimadas para esses supercondutores tiveram um desvio menor que 10%,
em comparacao as temperaturas criticas encontrada na literatura. Para os demais supercondutores,

o modelo nao pode predizer 7, de maneira satisfatoria.

4.6 Floresta Aleatoria

Com relacdo aos melhores hiperparametros, o modelo Floresta Aleatdria apresentou 800
arvores de decisdo com profundidade médxima de 20. Perante as drvores, elas deveriam possuir

ao menos 3 amostras para dividir um novo né e no minimo 6 amostras para formar uma folha.

Este modelo apresentou R? e RMSE de 0,97 e 5,53 K, respectivamente, para o conjunto
de treino. No conjunto de teste, o R? ficou em 0,93 e 0 RMSE em 8,97 K. Com relagdo ao
modelo Arvore de Decisio, que havia apresentado o melhor resultado até o momento, a Floresta
Aleatéria apresentou aumento do R? e diminui¢io do RM SE. A Figura 4.17 apresenta o grafico

de 7. prevista versus T, observada.

Figura 4.17 — T, prevista versus I, observada para o modelo Floresta Aleatdria, com R?de 0,93
e RMSE de 8,97 K
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Assim como mostrado na Figura 4.13, a Figura 4.17 revela que o modelo Floresta Aleatdria
também contornou o entio problema de predi¢cdo em baixas temperaturas. Além disso, a Figura

4.17 mostra uma concentracdo maior de amostras proximas a Curval Ideal.

A Figura 4.18 mostra uma andlise sobre a predicao de 7. em diferentes faixas de tempe-
raturas para este modelo. A andlise € elaborada com 0 mesmo intuito da apresentada pela Figura
4.14.

Figura 4.18 — O gréifico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predi¢do de temperatura
critica pelo modelo Floresta Aleatéria
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Fonte: o autor

Em comparacio 2 andlise feita para o modelo Arvore de Decisio, a Figura 4.18 mostra
uma melhoria geral (aumento) nos percentuais, como € ilustrado no gréfico a direita. O aumento
significa que o modelo conseguiu prever um maior nimero de amostras com um desvio menor
que 10%.

Além disso, pode-se destacar que o modelo conseguiu predizer 83,9% das temperaturas
na faixa de 120 a 130 K, com desvio menor que 10% dos valores medidos em laboratério. Por
mais que apenas 32,2% das amostras na faixa de 40 a 50 K tenham desvios menores que 10%,

houve uma melhora significativa (aumento de 13,1%) em relagio ao modelo Arvore de Decisdo.

Como o modelo Floresta Aleatdria € constituido de vdrias drvores de decisdo, € possivel
determinar o ganho de informacao para cada caracteristica usada no treinamento. A Figura 4.19
mostra as caracteristicas de maior relevancia, usadas pelo modelo para descrever a temperatura

critica.



Capitulo 4. Resultados 58

Figura 4.19 — Caracteristicas que mais contribuem com o ganho de informa¢do no modelo
Floresta Aleatdria
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Fonte: o autor

Assim como na Figura 4.15, a Figura 4.19 mostra que as duas caracteristicas com maiores
ganhos de informacgdo estdo relacionadas a condutividade térmica. Nos mesmos moldes da
Secdo 4.5, as caracteristicas foram ordenadas de maneira decrescente em relagao ao ganho de
informacdo. Desse modo, a Figura 4.20 mostra a relacdo de R? e RM SE com a utilizacdo

gradativa de caracteristicas mais importantes.

A Figura 4.20 também apresentou que a utilizacao de poucas caracteristicas mais rele-
vantes, conduz a resultados similares a utilizacdo de todas as 81 caracteristicas. Além disso, em
comparacao a Figura 4.16, a Figura 4.20 apresentou uma evolu¢do menos ruidosa nas curvas
de R? e RMSE. A presenca de menos ruidos representa uma maior consisténcia nas predicdes,

que se baseiam nas caracteristicas mais importantes.

Como este modelo também se mostrou consistente perante o problema, e apresentou
melhoria nas medidas de desempenho R2? e RM S E, ele foi utilizado para predizer as temperaturas
criticas dos supercondutores pesquisados no Departamento de Engenharia de Materiais (EEL -
USP). Os supercondutores, suas temperaturas criticas observadas e suas temperaturas criticas

estimadas pelo modelo em questdo, estdo representados na Tabela 4.3, assim como na Secdo 4.5.

O modelo pode prever a temperatura critica do TioGeC, Zrg.96Vp.04B2, T — NiTey
e ZrsPt3Cy3 com desvios menores que 10%, em relagdo a temperatura critica encontrada na
literatura em questdo. Apesar do modelo ter melhorado seu resultado na faixa de temperatura

de 0 a 10 K, como mostra a Figura 4.18, as predi¢des dos supercondutores na Tabela 4.3 nao
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melhoraram significantemente.

Figura 4.20 — Evolugdo de R* e RM SE diante do niimero de caracteristicas utilizadas para

treinar o modelo Floresta Aleatéria
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Fonte: o autor

Tabela 4.3 — Comparagao das temperaturas criticas estimadas pelo modelo de Floresta Aleatéria
com as encontradas na literatura

Supercondutor

T. Estimada T, Literatura |

TiyGeC (BORTOLOZO et al., 2012a) 94K 9,5K
H fV5Ga, (FERREIRA et al., 2018) 73K 4,1 K
Ti — NiTey (LIMA et al., 2018) 44K 40K
Ti5InC (BORTOLOZO et al., 2007) 48 K 3,1K
NbySnC (BORTOLOZO et al., 2006) 6,5 K 7,8 K
Z710.96V0.04B2 (RENOSTO et al., 2013) 7,8 K 8, 7K
NbsGes (BORTOLOZO et al., 2012b) 2,0K 153K
Zrs Pt3Ch 3 (RENOSTO et al., 2018) 6,4 K 7,0 K

Fonte: o autor
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4.7 Arvores Extremamente Aleatérias

Para este modelo, foram utilizadas 475 4rvores de decisdo. Cada drvore possuia profundi-
dade maxima de 20, requeria no minimo 2 amostras de dados em uma folha e exigia no minimo

4 amostras para dividir um novo né.

Sobre o conjunto de treino, o modelo alcancou um R? de 0,98 e um RM SE de 4,90
K. No conjunto de teste, o R? foi de 0,94 ¢ 0 RMSE de 8,72 K. Como pode ser percebido,
os valores das medidas de desempenho para o modelo de Arvores Extremamente Aleatérias

apresentaram o melhor resultado, até o presente momento.

A Figura 4.21 apresenta o gréfico de T prevista versus T, observada para o modelo de

Arvores Extremamente Aleatorias.

Figura 4.21 — T, prevista versus T, observada para o modelo Arvores Extremamente Aleatdrias,
com R2de 0,94e RMSE de 8,72 K
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Fonte: o autor

Ao comparar a Figura 4.17 com a Figura 4.21, € evidente que ambas possuem grande
semelhanca. Isto se deve ao fato destes métodos serem arquitetados de maneira semelhante. A
diferenca entre eles é que o modelo Arvores Extremamente Aleatérias tende a gerar suas drvores
de modo ainda mais aleatdrio. Assim, esse modelo tente a construir arvores mais diversificadas

em relacdo ao modelo Floresta Aleatéria. Além das semelhancgas entre a Figura 4.17 e a Figura
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4.21, os ganhos perante R? e RM SE nio sdo muito expressivos entre esses dois modelos.

Com base no que foi apresentado no pardgrafo anterior, a Figura 4.22 ajuda elucidar a
diferenca entre o modelo Arvores Extremamente Aleatdrias e o Floresta Aleatéria. Como pode
ser visto nela, o modelo atual consegue atribuir mais relevancia a outras caracteristicas. Nessa

perspectiva, a pontuacdo sobre o ganho de informagdo € melhor distribuida entre as caracteristicas.

Figura 4.22 — Caracteristicas que mais contribuem com o ganho de informagao no modelo
Arvores Extremamente Aleatdrias
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Fonte: o autor

A partir da Figura 4.22 € possivel perceber que as trés caracteristicas que mais contribuem
com o ganho de informag¢do no modelo, estdo relacionadas a condutividade térmica. Além disso,
todas as caracteristicas que aparecem na Figura 4.22 apresentaram os maiores coeficientes de

correlacdo Pearson (Equacgdo 3.4), como pode ser visto na Figura 4.4.

A Figura 4.23 apresenta o gréafico da evolugio de R? e RM SE em relagio ao nimero de
caracteristicas, ordenadas de forma decrescente em relacdo ao ganho de informacdo. A Figura 4.23
também mostra a convergéncia rdpida para os valores de R? ¢ RM SE. Entretanto, a0 comparar
a Figura 4.23 com a Figura 4.20, é possivel perceber que o modelo Arvores Extremamente

Aleatdrias converge de maneira menos abrupta, do que o modelo Floresta Aleatdria.

Na Figura 4.24 estd representada uma andlise sobre a predi¢do de temperatura critica em
diferentes faixas de temperaturas. Em todas as faixas de temperaturas, exceto na faixa entre 40 e
50 K, o modelo Arvores Extremamente Aleatérias apresentou um maior percentual de amostras
com desvio de predi¢ao menor que 10%. Na faixa entre 40 e 50 K, o modelo Floresta Aleatdria

conseguiu predizer 0,5% a mais de amostras com desvio menor que 10%. Além disso, o modelo
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Arvores Extremamente Aleatérias conseguiu predizer 90,3% das amostras com desvio menor
que 10%, na faixa de 120 a 130 K.

Figura 4.23 — Evolugio de R?* e RM SE diante do niimero de caracteristicas utilizadas para
treinar o modelo Arvores Extremamente Aleatérias
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Fonte: o autor

A Tabela 4.4 mostra os resultados de predicao de 7, para os supercondutores introduzidos
na Secdo 4.5. Ao analisar a tabela, € possivel identificar que o modelo conseguiu predizer a 7. do
TioGeC e do Zry.96V0.04B2 com desvio menor que 10%. Apesar do modelo apresentar melhores
resultados para o R e o RM SFE, ele ndo melhorou significantemente a predi¢do de T, para os

supercondutores apresentados na Tabela 4.4.
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Figura 4.24 — O grafico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predicdo de temperatura
critica pelo modelo Arvores Extremamente Aleatérias

n° amostras
B8 “
(=} (=] [=}

0 2 4 60 80 100 120 140 0 20 30 40 5 & 70 8 90 100 110 120 130 140
T¢ [k] no conjunto de teste T: [k] com desvios de predigdo < 10%

Fonte: o autor

Tabela 4.4 — Comparacio das temperaturas criticas estimadas pelo modelo de Arvores Extrema-
mente Aleatdrias com as encontradas na literatura

Supercondutor T. Estimada T, Literatura |

TiyGeC (BORTOLOZO et al., 2012a) 7, 7K 95K
H fV5Gay (FERREIRA et al., 2018) 6,9 K 4,1 K
Ti — NiTey (LIMA et al., 2018) 77K 40K
TioInC (BORTOLOZO et al., 2007) 39K 3,1K
NbySnC (BORTOLOZO et al., 2006) 6,0 K 7,8 K
ZTO.QG%'04BQ (RENOSTO et al., 2013) 7,9 K 8,7 K
NbsGes (BORTOLOZO et al., 2012b) 14K 15,3 K
ZrsPt3Cy 3 (RENOSTO et al., 2018) 5,8 K 7,0 K

Fonte: o autor

4.8 Gradient Boosting

Para o modelo Gradient Boosting os melhores hiperparametros foram: 150 arvores de
decisdo; profundidade das drvores igual a 10; minimo de 6 amostras em cada folha; minimo de 5

amostras para um no se dividir; taxa de aprendizado de 0,1.

Com relagdo aos modelos anteriores, que envolviam a construcdo de drvores de decisao,
o modelo Gradient Boosting se mostrou mais regularizado. Este modelo utilizou menos arvores

para descrever o problema de regressao proposto. Além disso, as drvores envolvidas tiveram
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profundida reduzida e exigiram mais das amostras para seu desenvolvimento, em relacao aos

modelos Arvores Extremamente Aleatdrias e Floresta Aleatéria.

Para o conjunto de treino, o modelo Gradient Boosting atingiu um R? de 0,98 e um
RMSE de 5,02 K. Perante os dados de treino, o modelo alcangou um R? de 0,93 e um RMSE
de 8,97 K. Em relaciio ao modelo Arvores Extremamente Aleatdrias, o qual apresentou melhores
R? e RMSE até o momento, o modelo Gradient Boosting apresentou resultados inferiores.
Entretanto, por mais que os resultados sejam inferiores a0 modelo Arvores Extremamente

Aleatdrias, as diferencas nas medidas de desempenho nao foram significativas.

A Figura 4.25 mostra o grafico de 7, prevista versus 1, observada para o modelo Gradient
Boosting. Ao observar a Figura 4.7, é possivel encontrar semelhancas entre ela e as Figuras 4.17
e 4.21. Assim, pode-se mencionar que o modelo Gradient Boosting aproxima suas predi¢des a

Curva Ideal de forma correlata aos modelos Arvores Extremamente Aleatéria e Floresta Aleatdria.

Figura 4.25 — T, prevista versus T, observada para o modelo Gradient Boosting, com R? de 0,93
e RMSE de 8,97 K
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Fonte: o autor

A Figura 4.26 apresenta a andlise sobre a predi¢cdo de temperatura critica em diferentes
faixas de temperaturas, empregada neste trabalho. Com relagdo aos modelos que empregam
arvores de decisdo, a andlise da Figura 4.26 permite afirmar que o modelo alcangou a pior predi¢do

para as temperaturas entre 0 e 10 K.



Capitulo 4. Resultados 65

Comparando com os modelos anteriores, o modelo Gradient Boosting obteve resultados de
predicdo semelhantes ao modelo Floresta Aleatéria. Entretanto, o modelo Arvores Extremamente
Aleatdria apresentou um melhor desempenho em todas as faixas de temperaturas. Por fim, pode-se
destacar para o modelo Gradient Boosting a predi¢ao de 87,1% das temperaturas criticas na faixa

de 120 a 130 K, com desvio menor que 10% em relacdo as temperaturas observadas.

Figura 4.26 — O gréafico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predicdo de temperatura
critica pelo modelo Gradient Boosting
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Fonte: o autor

As melhores caracteristicas, perante o ganho de informag¢do no presente modelo, estao
representadas na Figura 4.27. As duas caracteristicas de maior ganho de informagdo estdao
relacionadas a condutividade térmica do supercondutor. Ao analisar a Figura 4.27, € possivel
perceber que as caracteristicas mais importantes deste modelo estdo presentes em outros, que

também se basearam nas arvores de decisao.

Assim como para os outros modelos de drvores de decisdo, a evolu¢do das métricas R? e
RMSE em decorréncia da utilizagdo das caracteristicas mais importantes estd mostrada na Figura
4.28. Pode-se perceber que o grifico elucidado na Figura 4.28 para o modelo Gradient Boosting,
se assemelha muito ao grafico para o modelo Arvores Extremamente Aleatérias (Figura 4.23).
Este fato permite dizer que ambos modelos se apoiam de modo semelhante em suas principais

caracteristicas, para predizer a 7, dos supercondutores.

A Tabela 4.5 compara os valores das predi¢des do modelo com os valores encontrados na
literatura, para as temperaturas criticas dos supercondutores estudados na EEL-USP. Seguindo a

linha de discussao das secdes anteriores deste capitulo, pode-se afirmar que o presente modelo
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pode predizer somente a temperatura critica do supercondutor Zr; Pt3C( 3, com um desvio menor
que 10%.

Figura 4.27 — Caracteristicas que mais contribuem com o ganho de informacdo no modelo
Gradient Boosting
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Fonte: o autor

Tabela 4.5 — Comparacao das temperaturas criticas estimadas pelo modelo Gradient Boosting
com as encontradas na literatura

Supercondutor T. Estimada T, Literatura |

TiyGeC (BORTOLOZO et al., 2012a) 13,2 K 95K
H fV5Gay (FERREIRA et al., 2018) 6,6 K 4,1 K
Ti — NiTey (LIMA et al., 2018) 45K 4,0 K
TioInC (BORTOLOZO et al., 2007) 54K 3,1K
NbySnC (BORTOLOZO et al., 2006) 6,6 K 7,8 K
ZTO.QG‘/E).O4B2 (RENOSTO et al., 2013) 6,7 K 8,7 K
NbsGes (BORTOLOZO et al., 2012b) 3,8 K 15,3 K
ZrsPt3Cy 3 (RENOSTO et al., 2018) 6,8 K 7,0 K

Fonte: o autor
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Figura 4.28 — Evolugio de R* e RM SE diante do niimero de caracteristicas utilizadas para
treinar o modelo Gradient Boosting
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Fonte: o autor

4.9 Rede Neural Profunda

Para a Rede Neural Profunda, encontraram-se melhores valores para R* ¢ RM S E quando
o sistema consistia em 3 camadas ocultas. Nas camadas ocultas, a primeira possuia 61 neuronios,
a segunda 41 neurdnios e a terceira 21 neurénios. Além disso, determinou-se que 32 amostras

passariam pela rede, em cada reajuste dos pesos feito pelo otimizador.

O nimero de vezes em que todos os dados passam pela rede ¢ denominado €poca
(GOOGLE BRAIN TEAM, 2020). O valor da época foi determinado através de uma funcdo de
parada antecipada. Assim, este hiperparametro foi definido a partir do ponto em que o modelo
para de ser melhorado significativamente, perante a redu¢do do M SFE. A Figura 4.29 apresenta a

evolucdo do M SFE a partir do ndimero de épocas.

A partir da andlise grafica e de um atributo da biblioteca TensorFlow, o nimero de épocas
foi definido em 153. O gréfico da Figura 4.29 apresenta a minimizag¢do do M S E com os dados do
conjunto de treino. 20% deste conjunto foi usado para validar a minimiza¢do do M S E durante o
treinamento da rede. A curva continua na Figura 4.29 representa a reducdo do M S F, perante os

dados que estdo continuamente melhorando a predicao do modelo. A curva tracejada na Figura
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4.29, apresenta o desempenho da reducdo do M S FE pelos 20% dos dados de treino - dados que

nao foram usados no treinamento. A partir da curva tracejada € que se defini o nimero de épocas.

Figura 4.29 — Evoluc¢do do M SE diante do nimero de épocas
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Fonte: o autor

A partir do treinamento da rede com os hiperpardmetros acima, pode-se obter um R? de
0,92 eum RMSE de 9,83 K, para os dados de treino. Nos dados de teste, o R? se consolidou
em 0,90 e o RMSFE em 11,19 K. A Figura 4.30 apresenta o grafico de T, prevista versus T,

observada para a Rede Neural Profunda.

Por mais que o modelo tenha atingido bons resultados para R? e RM SE, em comparacdo
aos apresentados neste capitulo, ele ndo foi o melhor. Além disso, o modelo de Rede Neural
Profunda trouxe novamente o problema de predi¢do em baixas temperaturas. Na Figura 4.30, por
mais que o modelo distribua bem as temperaturas ao redor da Curva Ideal, € possivel ver que ele

prediz algumas temperaturas com valores abaixo de 0 K, configurando uma incoeréncia fisica.

Considerando os bons valores de R? e RM S E, foi elaborada uma andlise das predicdes de
T, em diferentes faixas de temperaturas, nos mesmos moldes dos modelos anteriores apresentados
neste capitulo. A Figura 4.31 apresenta a andlise feita para a Rede Neural Profunda, com base

nas predicoes de 7. com desvios menores que 10%.
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Figura 4.30 — T, prevista versus T, observada para a Rede Neural Profunda, com R? de 0,90 e
RMSFE de 11,19 K
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Fonte: o autor

A Figura 4.31 revela que na Rede Neural Profunda, os percentuais de predi¢ao de 7
com desvio menor que 10% foram bem inferiores aos apresentados por outros modelos, que se
basearam em arvores de decis@o. Apesar disso, a Rede Neural Profunda conseguiu prever 78,6%

das temperaturas criticas na faixa de 130 a 140 K, com desvio menor que 10% do valor medido
em laboratorio.

A Tabela 4.6 apresenta os valores da predicao de 7, feita pelo modelo Rede Neural
Profunda, para os supercondutores apresentados na Se¢do 4.5. O modelo conseguiu predizer bem

as temperaturas criticas dos supercondutores NiT'e; € Z71g.96V0.04 582, desviando a predicao de
ambos em 0,1 K.
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Figura 4.31 — O gréafico a esquerda mostra a quantidade de amostras no conjunto de teste. O
gréfico a direita apresenta o percentual e o nimero de amostras do conjunto de teste,
que apresentaram desvio menor que 10% no processo de predi¢ao de temperatura
critica pela Rede Neural Profunda
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Tabela 4.6 — Comparacao das temperaturas criticas estimadas pelo modelo Rede Neural Profunda
com as encontradas na literatura

Supercondutor T. Estimada T, Literatura |

TiyGeC (BORTOLOZO et al., 2012a) 152K 95K
H fV5Gay (FERREIRA et al., 2018) 9,3 K 4,1 K
Ti — NiTey (LIMA et al., 2018) 9,3 K 40K
TioInC (BORTOLOZO et al., 2007) 2,3 K 3,1K
NbySnC (BORTOLOZO et al., 2006) 5,0K 7,8 K
Z710.96Vo.0aBa (RENOSTO et al., 2013) 8,8 K 8, 7K
NbsGe; (BORTOLOZO et al., 2012b) 7,2 K 15,3 K
ZrsPt3Cy 3 (RENOSTO et al., 2018) 48 K 7,0 K

Fonte: o autor

4.10 Discussao geral dos resultados

Com base nos resultados apresentados, o modelo Arvores Extremamente Aleatdrias
mostrou-se como o melhor. Além dos melhores valores para as medidas de desempenho R e
RM SE, o modelo Arvores Extremamente Aleatdrias obteve os melhores resultados de predicoes

em diferentes faixas de temperaturas, como pode ser observado na Figura 4.24.

Com base no pardgrafo anterior, pode-se afirmar que este trabalho conseguiu melhor

descrever o problema proposto, com um R? igual a 0,94 e RM SE igual a 8,72 K, para os dados
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de teste. Perante o trabalho de Hamidieh (2018), o mais parecido com esta monografia, o R? € o

RMSE obtidos para 0 mesmo problema foram de 0,92 e 9,5 K, respectivamente.

Hamidieh (2018) resolveu a mesma problemadtica apresentada neste trabalho, utilizando a
mesma base de dados, porém com um niimero menor de amostras de supercondutores. Hamidieh
(2018) utilizou o modelo Gradient Boosting, com os seguintes hiperparametros: 374 arvores
de decisdo; profundidade das arvores igual a 16; minimo de 1 amostra em cada folha; taxa de
aprendizado de 0,02.

Em comparagio com os resultados do Gradient Boosting desta monografia (R? = 0,93
e RMSE = 8,97 K), é possivel observar que ambos trabalhos atingiram resultados similares.
Entretanto, os resultados apresentados na Secdo 4.8 mostra um modelo Gradient Boosting mais

regularizado para esta monografia.

O modelo Gradient Boosting deste trabalho utilizou menos drvores de decisao, com
profundidade de arvores menores € com mais restricdes para o crescimento das arvores. A
explicacdo para este fato, € a utilizacdo da metodologia empregada na Capitulo 3, que deriva da

estruturacdo tedrica proveniente de Scikit-learn (2020e) e Géron (2019).

A Figura 4.32 mostra o resultado do gréfico de 7, prevista versus T, observada para o
trabalho de Hamidieh (2018). Para discutir a eficiéncia dos resultados na Figura 4.32, Hamidieh
(2018) usou o modelo de Regressdao Linear Multiplica. Os resultados da Regressdao Linear
Muiltiplica, apresentados em Hamidieh (2018), sdo idénticos aos elucidados neste trabalho na
Secdo 4.2.

Além de Hamidieh (2018), outros autores produziram trabalhos visando contornar o
problema de predicdo da temperatura critica de supercondutores, usando modelos de ML. Le et
al. (2020), por exemplo, focou em explorar a capacidade da predi¢ao de 7, em altas temperaturas.
Em seu trabalho, ele conseguiu atingir um R? de 0,94 e um RM SE de 3,83 K, através de uma

Rede Neural baseada no teorema de Bayes.

Além do resultado de Le et al. (2020), Stanev et al. (2018) revela um R? de 0,85 para a
predicdo da 7. de supercondutores de altas temperaturas, usando um modelo de Floresta Aleatdria.
Também, Owolabi, Akande e Olatunji (2016) treinam um modelo de ML usando Mdaquinas de
Vetores de Suporte, para predizer T, de supercondutores YBCO. Para este tltimo, um resultado
de R? igual a 0,96 ¢ alcangado.

Durante o desenvolvimento desta monografia, outros trabalhos foram publicados com a
mesma temdtica. Roter e Dordevic (2020) publicaram na revista Physica C: Superconductivity
and its Applications, um artigo sobre a predicao de 7, usando um modelo com vérias arvores
de decisdo. No trabalho de Roter e Dordevic (2020), a mesma base de dados explorada nesta
monografia foi empregada. Assim, Roter e Dordevic (2020) conseguiram atingir um R? de 0,93
eum RMSE de 8,91 K. A Figura 4.33 mostra o grafico de 7. prevista versus 1. observada para
o trabalho de Roter e Dordevic (2020).
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Figura 4.32 — T, prevista versus T, observada para o Gradient Boosting, com R? de 0,92 e
RMSFE de 9,5 K, segundo trabalho de Hamidieh (2018)
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Fonte: Hamidieh (2018)

Perante os trabalhos de outros autores, pode-se afirmar que os modelos desenvolvidos
nesta monografia atingiram bons resultados. Para o modelo de Floresta Aleatéria, por exemplo,
este trabalho alcancou um R? de 0,93. Para um mesmo modelo de Floresta Aleatdria, limitado a
altos valores de T, Stanev et al. (2018) atingiu um R? de 0,84.

Por mais que neste trabalho os modelos de SVM tenham sido pouco explorados, por nao
estimarem bem as baixas temperaturas, Owolabi, Akande e Olatunji (2016) apresentaram um R>

de 0,96 para supercondutores YBCO, usando um modelo de SVM.

Destacou-se também o RM SE de 3,83 K apresentado no trabalho de Le et al. (2020).
Apesar do erro ser extremamente significativo perantes os apresentados neste trabalho, Le et al.
(2020) também direciona suas andlises a temperaturas criticas altas. Deve-se salientar, que nesta

monografia a 7, foi explorada sem distin¢do de faixas de temperaturas.

Contudo, os resultados de Roter e Dordevic (2020) ficaram os mais préximos aos dis-
cutidos nesta monografia, para o modelo de Arvores Extremamente Aleatdrias. Alids, pode-se
encontrar semelhancas entre as Figuras 4.21 e 4.33, que representam os resultados das predicoes

desses modelos.

Na literatura, ndo foi possivel encontrar resultados que apresentassem os mesmos hi-
perparametros atingidos nesta monografia. Além disso, ndo foi encontrado nenhum trabalho

que explorasse a aplicacdo do modelo Arvores Extremamente Aleatdrias para predizer a T, de
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supercondutores.

Figura 4.33 — T, prevista versus T, observada, com R* de 0,93 e RMSE de 8,91 K segundo
trabalho de Roter e Dordevic (2020)
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5 Consideracoes Finais

5.1 Conclusao

Pode-se concluir que o presente trabalho conseguiu melhor predizer a temperatura critica
dos supercondutores a um R? de 0,94 e aum erro de &8, 72 K. Estes resultados sio provenientes do
modelo Arvores Extremamente Aleatdrias, que se mostrou o melhor modelo dentre os avaliados.
Além de obter os melhores valores para R? e RM SE, este modelo se mostrou mais preciso nas
predicoes de supercondutores em diferentes faixas de temperatura como pode ser visto na Figura
4.24. Como um diferencial para este modelo, pode-se destacar que ele conseguiu utilizar melhor
as caracteristicas calculadas na Sec¢do 3.2 para predizer 7., como pode ser mostrado na Figura
4.23.

Outra conclusiao importante para este trabalho, € fato dos modelos que usaram arvores
de decisdo para realizar predicoes terem conseguido melhor generalizar o problema proposto.
Como pode ser visto nos resultados mostrados no Capitulo 4, os modelos que usaram drvores de
decisdo, além de obterem os melhores resultados para R? e RM SE, conseguiram de maneira
generalizada aproximar suas predi¢des aos valores observados em laboratério. Este resultado é
reafirmado pelas andlises de predi¢des em diferentes faixas de temperatura e pelos graficos de 7.

prevista versus 1, observada.

Comparando esta monografia com outros trabalhos, como foi feito na Se¢ao 4.10, € pos-
sivel concluir que os resultados dos melhores modelos apresentados no Capitulo 4 sao préximos
aos apresentados por Roter e Dordevic (2020) e Hamidieh (2018). Comparado com o trabalho
de Hamidieh (2018), o qual possui a mesma estrutura de base de dados, este trabalho aumentou
0 R? em 0,02 e diminuiu 0 RM SE em 0,8 K ao utilizar o modelo de Arvores Extremamente
Aleatdrias, ao invés do modelo Gradient Boosting. Além disso, ao comparar o modelo Gradient
Boosting desenvolvido nesta monografia, com o mesmo modelo usado por Hamidieh (2018),
€ possivel perceber que neste trabalho o modelo em questiao encontra-se mais regularizado. O
resultado de uma melhor regularizacdo pode ser atribuido ao processo de validagao cruzada nos

moldes da Secdo 3.4.

Na tentativa de predizer a 7. dos supercondutores abordados em artigos do Departamento
de Engenharia de Materias da EEL-USP, pode-se concluir que nenhum modelo conseguiu prever
bem os resultados dos supercondutores em questdo. Um motivo possivel para estas predicoes
ndo serem proximas ao esperado para estes supercondutores, € a ndo representatividade das
caracteristicas levantas na Sec¢do 3.2. Apesar disso, um R? de 0,94 conduz a relevancia da busca
por caracteristicas mais representativas para a problemadtica apresentada, ou at€é mesmo novas

abordagens de aprendizado de maquina.
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Por fim, por mais que a IA tenha sido teorizada a muito tempo, como pode ser visto na
Secdo 2.2.6, ela vem sendo utilizada cada vez mais por conta da capacidade de processamento
dos computadores e a disponibilidade de dados. Por esse motivo, é possivel observar o aumento
da utilizacdo de modelos de ML associado a descri¢ao de problemas fisicos, como o apresentado
aqui e nas publicacgdes referenciadas no corpo desta monografia. Nessa perspectiva, por mais que
a utilizacdo de modelos de ML nao substitua a necessidade de descricao teoria de fendmenos
como o da supercondutividade, eles podem ser usados como ferramenta em apoio a resultados

cientificos.

5.2 Trabalhos Futuros

Este trabalho usou somente caracteristicas estatisticas levantadas pela férmula quimica de
supercondutores. Desse modo, a exploragcdo de caracteristicas mais relacionadas a problemética
da supercondutividade poderiam ser incorporadas no treinamento dos modelos de ML, como

pressao, estrutura cristalina e melhor descricdo tedrica ou numérica para o supercondutor.

Ademais, para trabalhos futuros, diferentes modelos de machine learning poderiam ser
explorados. Além disso, caberia a avaliacao do treinamento de modelos restringindo-os a uma
faixa de temperatura critica, como feito nos trabalhos de Stanev et al. (2018) e Le et al. (2020),

referenciados nesta monografia.

Outra alternativa a sequenciagdo deste trabalho seria a exploracdo de outras propriedades
supercondutoras, como campo critico ou densidade decorrente critica. Ainda para a supercon-
dutividade, além de implementar problemas de regressao, seria possivel avaliar o desempenho
dos modelos de ML em classificar se determinado material apresentaria ou nao indicios de

supercondutividade.

Também, uma outra possibilidade de continuagdo seria a utilizacdo da metodologia
desenvolvida por este trabalho, para avaliar o desempenho de modelos de ML na predicao de

outras propriedades fisicas, ndo necessariamente ligadas a supercondutividade.
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